НТЦ "Механотроника"

27.12.31.000

код продукции при поставке на экспорт

Утвержден ДИВГ.648228.039-16.01 РЭ-ЛУ

БЛОК МИКРОПРОЦЕССОРНЫЙ РЕЛЕЙНОЙ ЗАЩИТЫ БМР3-159-ПЛК-01

Руководство по эксплуатации

ДИВГ.648228.039-16.01 РЭ

Содержание

	Лист
1 Назначение	5
2 Технические характеристики	5
2.1 Оперативное питание	
2.2 Аналоговые входы	5
2.3 Дискретные входы	5
2.4 Дискретные выходы	6
2.5 Характеристики функций блока	7
3 Конфигурирование блока	11
3.1 Общие принципы	11
3.2 Реализация	11
4 Описание функций блока	15
4.1 Пусковые органы по измеренным напряжениям	15
4.2 Пусковые органы по симметричным составляющим напряжений	15
4.3 Контроль синхронизма при подключении блока на фазные напряжения	15
4.4 Контроль синхронизма при подключении блока на линейные напряжения	15
4.5 Квитирование сигнализации	16
4.6 Измерение параметров сети	16
4.7 Самодиагностика блока	17
4.8 Осциллограф	18
Приложение А Схема электрическая подключения	19
Приложение Б Алгоритмы пусковых органов	21
Приложение В Адресация параметров в АСУ	26

Литера Листов 33 Формат А4 Настоящее руководство по эксплуатации предназначено для ознакомления с возможностями, принципами работы, конструкцией и правилами эксплуатации блоков микропроцессорных релейной защиты БМРЗ-159-ПЛК-01 (ПЛК - программируемый логический контроллер).

Настоящее РЭ распространяется на следующие исполнения БМРЗ-159-ПЛК-01, различающиеся номинальным значением напряжения оперативного тока, составом коммуникационных интерфейсов, наличием протокола МЭК 61850, исполнением пульта, и имеющие полное условное наименование (код) в соответствии с таблицей 1.

Таблица 1 - Исполнения БМРЗ-159-ПЛК-01

Обозначение	Полное условное наименование (код)	Номинальное напряжение	Состав коммуникационных интерфейсов для связи с АСУ, наличие МЭК 61850	
	Исполнен	ие пульта - встроенны	ій	
ПИДЕ 640220 020 66	БМР3-159-1-Д-	Переменное 100 В,	Два RS-485, два Ethernet	
ДИВГ.648228.039-66	ПЛК-01	постоянное 110 В	10/100 BASE-TX	
ДИВГ.648228.039-67	БМР3-159-1-Д-	Переменное 100 В,	Два RS-485, два Ethernet	
ДИБ1 .046226.039-07	О-ПЛК-01	постоянное 110 В	100 BASE-FX	
ДИВГ.648228.039-16	БМРЗ-159-2-Д-	Переменное 220 В,	Два RS-485, два Ethernet	
ДИБ1 .046226.039-10	ПЛК-01	постоянное 220 В	10/100 BASE-TX	
ПИДГ 649229 020 17	БМРЗ-159-2-Д-	Переменное 220 В,	Два RS-485, два Ethernet	
ДИВГ.648228.039-17	О-ПЛК-01	постоянное 220 В	100 BASE-FX	
ПИДЕ 640220 020 60	БМРЗ-159-4-Д-	Постоянное 220 В ¹⁾	Два RS-485, два Ethernet	
ДИВГ.648228.039-68	ПЛК-01	Постоянное 220 Б	10/100 BASE-TX	
ДИВГ.648228.039-69	БМРЗ-159-4-Д-	Постоянное 220 В ¹⁾	Два RS-485, два Ethernet	
ДИБ1 .048228.039-09	О-ПЛК-01	Постоянное 220 Б	100 BASE-FX	
ДИВГ.648228.139-66	БМРЗ-159-1-Д-	Переменное 100 В,	Два RS-485, два Ethernet	
ДИБ1.046226.139-00	М-ПЛК-01	постоянное 110 В	10/100 BASE-TX и МЭК 61850	
ПИДЕ 640220 120 67	БМРЗ-159-1-Д-	Переменное 100 В,	Два RS-485, два Ethernet	
ДИВГ.648228.139-67	ОМ-ПЛК-01	постоянное 110 В	100 BASE-FX и МЭК 61850	
ДИВГ.648228.139-16	БМРЗ-159-2-Д-	Переменное 220 В,	Два RS-485, два Ethernet	
ДИБ1.040220.139-10	М-ПЛК-01	постоянное 220 В	10/100 BASE-TX и МЭК 61850	
ПИДЕ 640220 120 17	БМРЗ-159-2-Д-	Переменное 220 В,	Два RS-485, два Ethernet	
ДИВГ.648228.139-17	ОМ-ПЛК-01	постоянное 220 В	100 BASE-FX и МЭК 61850	
ДИВГ.648228.139-68	БМРЗ-159-4-Д-	Постоянное 220 Р1)	Два RS-485, два Ethernet	
ДИБ1.040220.139-00	М-ПЛК-01	I HOCTOGUUGE / /H B ¹ / I	10/100 BASE-TX и МЭК 61850	
ПИДГ 649229 120 60	БМРЗ-159-4-Д-	Постоянное 220 В ¹⁾	Два RS-485, два Ethernet	
ДИВГ.648228.139-69	ОМ-ПЛК-01	Постоянное 220 Б	100 BASE-FX и МЭК 61850	
	Исполнен	ие пульта - вынесенны	ий	
ДИВГ.648228.049-66	БМРЗ-159-1-П-	Переменное 100 В,	Два RS-485, два Ethernet	
ДИБ1 .046226.049-00	ПЛК-01	постоянное 110 В	10/100 BASE-TX	
ПИДЕ 649229 040 67	БМРЗ-159-1-П-	Переменное 100 В,	Два RS-485, два Ethernet	
ДИВГ.648228.049-67	О-ПЛК-01	постоянное 110 В	100 BASE-FX	
ПИДЕ 640220 040 16	БМР3-159-2-П-	Переменное 220 В,	Два RS-485, два Ethernet	
ДИВГ.648228.049-16	ПЛК-01	постоянное 220 В	10/100 BASE-TX	
ПИДЕ 649229 040 17	БМРЗ-159-2-П-	Переменное 220 В,	Два RS-485, два Ethernet	
ДИВГ.648228.049-17	О-ПЛК-01	постоянное 220 В	100 BASE-FX	
ПІЛОГ 6/19/20 0/10 60	БМР3-159-4-П-	Постоянное 220 В ¹⁾	Два RS-485, два Ethernet	
ДИВГ.648228.049-68	ПЛК-01	110СТОЯННОЕ 220 В	10/100 BASE-TX	

Обозначение	Полное условное наименование (код)	Номинальное напряжение	Состав коммуникационных интерфейсов для связи с АСУ, наличие МЭК 61850
ДИВГ.648228.049-69	БМР3-159-4-П- О-ПЛК-01	Постоянное 220 В ¹⁾	Два RS-485, два Ethernet 100 BASE-FX
ДИВГ.648228.149-66	БМР3-159-1-П- М-ПЛК-01	Переменное 100 В, постоянное 110 В	Два RS-485, два Ethernet 10/100 BASE-TX и МЭК 61850
ДИВГ.648228.149-67	БМР3-159-1-П- ОМ-ПЛК-01	Переменное 100 В, постоянное 110 В	Два RS-485, два Ethernet 100 BASE-FX и МЭК 61850
ДИВГ.648228.149-16	БМР3-159-2-П- М-ПЛК-01	Переменное 220 В, постоянное 220 В	Два RS-485, два Ethernet 10/100 BASE-TX и МЭК 61850
ДИВГ.648228.149-17	БМР3-159-2-П- ОМ-ПЛК-01	Переменное 220 В, постоянное 220 В	Два RS-485, два Ethernet 100 BASE-FX и МЭК 61850
ДИВГ.648228.149-68	БМР3-159-4-П- М-ПЛК-01	Постоянное 220 В ¹⁾	Два RS-485, два Ethernet 10/100 BASE-TX и МЭК 61850
ДИВГ.648228.149-69	БМР3-159-4-П- ОМ-ПЛК-01	Постоянное 220 B ¹⁾	Два RS-485, два Ethernet 100 BASE-FX и МЭК 61850

¹⁾ При подключении дискретного входа блока этого исполнения следует соблюдать полярность входного сигнала.

В настоящем РЭ приведены следующие приложения:

- приложение А "Схема электрическая подключения";
- приложение Б "Алгоритмы пусковых органов";
- приложение В "Адресация параметров в АСУ".

К работе с БМРЗ-159-ПЛК-01 допускается персонал, имеющий допуск не ниже третьей квалификационной группы по электробезопасности.

ВНИМАНИЕ: В БМРЗ-159-ПЛК-01 УСТАНОВЛЕНО БАЗОВОЕ ФУНКЦИОНАЛЬНОЕ ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ (БФПО) ВЕРСИЯ 01. ЗАВОДСКИЕ ЗНАЧЕНИЯ УСТАВОК ПРИВЕДЕНЫ В П. 2.5. ПАРАМЕТРЫ НАСТРОЙКИ ПОДЛЕЖАТ ИЗМЕНЕНИЮ ПОТРЕБИТЕЛЕМ ПОД КОНКРЕТНОЕ ПРИСОЕДИНЕНИЕ!

При изучении и эксплуатации БМРЗ-159-ПЛК-01 необходимо дополнительно руководствоваться следующими документами:

- руководством по эксплуатации "Блок микропроцессорный релейной защиты БМРЗ. Руководство по эксплуатации" ДИВГ.648228.029 РЭ, в котором приведено описание характеристик, общих для семейства БМРЗ;
 - паспортом ДИВГ.648228.029 ПС.
- руководством оператора "Программный комплекс "Конфигуратор МТ" Руководство оператора".

1 Назначение

ДИВГ.648228.039-16, 1.1 Блоки микропроцессорные релейной зашиты БМР3: ДИВГ.648228.039-17, ДИВГ.648228.039-66, ДИВГ.648228.039-67, ДИВГ.648228.039-68, ДИВГ.648228.139-16, ДИВГ.648228.139-17, ДИВГ.648228.039-69, ДИВГ.648228.139-66, ДИВГ.648228.139-67, ДИВГ.648228.139-68, ДИВГ.648228.139-69, ДИВГ.648228.049-16, ДИВГ.648228.049-17, ДИВГ.648228.049-66, ДИВГ.648228.049-67, ДИВГ.648228.049-68, ДИВГ.648228.049-69, ДИВГ.648228.149-16, ДИВГ.648228.149-17, ДИВГ.648228.149-66, ДИВГ.648228.149-67, ДИВГ.648228.149-68, ДИВГ.648228.149-69 (далее - блок) предназначены для построения функций релейной защиты, автоматики, управления выключателями и сигнализации присоединений напряжением 0,4 - 35 кВ.

2 Технические характеристики

2.1 Оперативное питание

2.1.1 Требования к оперативному питанию приведены в общем руководстве по эксплуатации ДИВГ.648228.029 РЭ.

2.2 Аналоговые входы

2.2.1 Перечень аналоговых входов блока приведен в таблице 2.

Таблица 2 - Аналоговые входы

	Наименование сигнала	Диапазон контро-	Обозначение в функ-
		лируемых значений	циональных схемах
1	Напряжение 1U1	От 2 до 260 В	1U1
2	Напряжение 1U2	От 2 до 260 В	1U2
3	Напряжение 1U3	От 2 до 260 В	1U3
4	Напряжение 1U4	От 2 до 260 В	1U4
5	Напряжение 2U1	От 2 до 260 В	2U1
6	Напряжение 2U2	От 2 до 260 В	2U2
7	Напряжение 2U3	От 2 до 260 В	2U3
8	Напряжение 2U4	От 2 до 260 В	2U4

Подробные характеристики аналоговых входов приведены в общем руководстве по эксплуатации ДИВГ.648228.029 РЭ.

Схема подключения аналоговых входов приведена в приложении А.

2.3 Дискретные входы

- 2.3.1 Перечень дискретных входов базового исполнения блока приведен в таблице 3.
- 2.3.2 Любой дискретный вход блока может быть назначен на свободно назначаемое реле (см. таблицу 4).

Таблица 3 - Дискретные входы

Наименование сигнала		именование сигнала Функция сигнала	
1	[Я1] Вход		3/1, 3/2
2	[Я2] Вход		3/3, 3/2
3	[ЯЗ] Вход		3/5, 3/6
4	[Я4] Вход	Свободно назначаемый вход	3/7, 3/6
5	[Я5] Вход		3/9, 3/10
6	[Я6] Вход		3/11, 3/10
7	[Я7] Вход		3/12, 3/10

Продолжение таблицы 3

Наименование сигнала	аименование сигнала Функция сигнала	
8 [Я8] Вход		3/14, 3/15
9 [Я9] Вход		3/17, 3/18
10 [Я10] Вход		3/20, 3/21
11 [Я11] Вход		31/1, 31/2
12 [Я12] Вход		31/3, 31/4
13 [Я13] Вход		31/5, 31/6
14 [Я14] Вход		31/7, 31/8
15 [Я15] Вход	Свободно назначаемый вход	31/9, 31/10
16 [Я16] Вход		31/11, 31/12
17 [Я17] Вход		31/13, 31/14
18 [Я18] Вход		31/15, 31/16
19 [Я19] Вход		31/17, 31/18
20 [Я20] Вход		31/19, 31/20
21 [Я21] Вход		31/21, 31/22
22 [Я22] Вход		31/23, 31/24

В таблице 3 принято следующее обозначение для дискретных входов XX/YY, где XX - маркировка соединителя, YY - номер контакта (например, 3/9, 31/11).

Характеристики дискретных входов приведены в общем руководстве по эксплуатации ДИВГ.648228.029 РЭ.

2.4 Дискретные выходы

2.4.1 Перечень дискретных выходов базового исполнения блока приведен в таблице 4.

Таблица 4 - Дискретные выходы

Наименование сигна- ла	Контакт	Функция сигнала	Обозначение цепи во вторичных схемах РЗА
1 [K1] Выход	3		4/1, 4/2
2 [K2] Выход 3 [K3] Выход	3	Свободно назначаемое реле	4/3, 4/2
3 [КЗ] Выход 4 [К4] Отказ БМРЗ	P	Отказ БМРЗ	4/5, 4/6 4/7, 4/6
5 [K5] Выход	3	Otras Divit 5	4/9, 4/10
6 [K6] Выход	3		4/12, 4/13
7 [К7] Выход	Переключающий		4/15, 4/16, 4/17
8 [К8] Выход	3		4/19, 4/20
9 [К9] Выход	3		4/22, 4/23
10 [К10] Выход	3		4/24, 4/23
11 [К11] Выход	3	Свободно назначаемое реле	41/1, 41/2
12 [К12] Выход	3	свооодно назначаемое реле	41/3, 41/4
13 [К13] Выход	3		41/5, 41/6
14 [К14] Выход	3		41/8, 41/9
15 [К15] Выход	3		41/10, 41/11
16 [К16] Выход	3		41/12, 41/13
17 [К17] Выход	Переключающий		41/14, 41/15, 41/16
18 [К18] Выход	3		41/17, 41/18

Наименование сигнала		Наименование сигнала Контакт Функция сигнала		Обозначение цепи	
				во вторичных	
				схемах РЗА	
19	[К19] Выход	3		41/19, 41/20	
20	[К20] Выход	Оптоэлектронное		41/21, 41/22	
20	20 [К20] Выход	реле		Свободно назначаемое реле	41/21, 41/22
21	[К21] Выход	Оптоэлектронное		41/23, 41/24	
<u> </u>	[[К∠1] Вых0Д	реле		41/23, 41/24	

В таблице 4 принято следующее обозначение для дискретных выходов:

- XX/YY, где XX маркировка соединителя, YY номер контакта (например, 4/3, 41/11);
- 3 замыкающий контакт, Р размыкающий контакт.

Характеристики дискретных выходов приведены в общем руководстве по эксплуатации ДИВГ.648228.029 РЭ.

2.5 Характеристики функций блока

- 2.5.1 Уставки пусковых органов, уставки по времени, программные ключи
- 2.5.1.1 Параметры уставок блока приведены в таблице 5.
- 2.5.1.2 Параметры уставок пусковых органов (ПО) приведены во вторичных значениях.

Таблица 5 - Уставки пусковых органов, уставки по времени, программные ключи

Уставка	Обозначение	Заводская установка	Диапазон значений	Дискрет- ность	
Коэффициенты трансформации					
Коэффициент трансформации напряжения 1U1	Ктр 1U1	1	1 - 400	1	
Коэффициент трансформации напряжения 1U2	Ктр 1U2	1	1 - 400	1	
Коэффициент трансформации напряжения 1U3	Ктр 1U3	1	1 - 400	1	
Коэффициент трансформации напряжения 1U4	Ктр 1U4	1	1 - 400	1	
Коэффициент трансформации напряжения 2U1	Ктр 2U1	1	1 - 400	1	
Коэффициент трансформации напряжения 2U2	Ктр 2U2	1	1 - 400	1	
Коэффициент трансформации напряжения 2U3	Ктр 2U3	1	1 - 400	1	
Коэффициент трансформации напряжения 2U4	Ктр 2U4	1	1 - 400	1	
Уставки пусковых о	рганов по напряжен	ию 1U1			
Уставки максимальных пусковых органов по напряжению 1U1 (Кв ¹⁾ от 0,93 до 0,97), В	PH1 1U1 MAKC – PH5 1U1 MAKC	230	5 - 250	1	
Уставки минимальных пусковых органов по напряжению 1U1 (Кв от 1,03 до 1,07), В	PH1 1U1 МИН – PH5 1U1 МИН	180	5 - 250	1	
Уставки пусковых о		ию 1U2		1	
Уставки максимальных пусковых органов по напряжению 1U2 (Кв от 0,93 до 0,97), В	PH1 1U2 MAKC – PH5 1U2 MAKC	230	5 - 250	1	
Уставки минимальных пусковых органов по напряжению 1U2 (Кв от 1,03 до 1,07), В	PH1 1U2 МИН – PH5 1U2 МИН	180	5 - 250	1	
Уставки пусковых о	рганов по напряжен	ию 1U3			
Уставки максимальных пусковых органов по напряжению 1U3 (Кв от 0,93 до 0,97), В	PH1 1U3 MAKC – PH5 1U3 MAKC	230	5 - 250	1	
Уставки минимальных пусковых органов по напряжению 1U3 (Кв от 1,03 до 1,07), В	PH1 1U3 МИН – PH5 1U3 МИН	180	5 - 250	1	
Уставки пусковых о	рганов по напряжен	ию 1U4		1	
Уставки максимальных пусковых органов по напряжению 1U4 (Кв от 0,93 до 0,97), В	PH1 1U4 MAKC – PH5 1U4 MAKC	230	5 - 250	1	

Уставка	Обозначение	Заводская установка	Диапазон значений	Дискрет- ность
Уставки минимальных пусковых органов по	PH1 1U4 МИН –	180	5 - 250	1
напряжению 1U4 (Кв от 1,03 до 1,07), В	PH5 1U4 МИН		3 - 230	1
Уставки пусковых	рганов по напряжен	нию 2U1		1
Уставки максимальных пусковых органов по	PH1 2U1 MAKC –	230	5 - 250	1
напряжению 2U1 (Кв от 0,93 до 0,97), В	PH5 2U1 MAKC	250	3 230	1
Уставки минимальных пусковых органов по	PH1 2U1 МИН –	180	5 - 250	1
напряжению 2U1 (Кв от 1,03 до 1,07), В	PH5 2U1 МИН			-
	органов по напряжен	нию 2U2	T	1
Уставки максимальных пусковых органов по	PH1 2U2 MAKC –	230	5 - 250	1
напряжению 2U2 (Кв от 0,93 до 0,97), В	PH5 2U2 MAKC			_
Уставки минимальных пусковых органов по	PH1 2U2 МИН –	180	5 - 250	1
напряжению 2U2 (Кв от 1,03 до 1,07), В	PH5 2U2 МИН		0 200	_
· ·	рганов по напряжен	нию 2U3	1	
Уставки максимальных пусковых органов по	PH1 2U3 MAKC –	230	5 - 250	1
напряжению 2U3 (Кв от 0,93 до 0,97), В	PH5 2U3 MAKC	230	3 230	•
Уставки минимальных пусковых органов по	PH1 2U3 МИН –	180	5 - 250	1
напряжению 2U3 (Кв от 1,03 до 1,07), В	PH5 2U3 МИН		3 - 230	1
Уставки пусковых	органов по напряжен	ию 2U4		
Уставки максимальных пусковых органов по	PH1 2U4 MAKC –	230	5 - 250	1
напряжению 2U4 (Кв от 0,93 до 0,97), В	PH5 2U4 MAKC	230	3 - 230	1
Уставки минимальных пусковых органов по	PH1 2U4 МИН –	180	5 - 250	1
напряжению 2U4 (Кв от 1,03 до 1,07), В	PH5 2U4 МИН	100	3 - 230	1
Уставки пусковых органов по нап	ряжению прямой пос	следовательн	юсти U1_1	
Уставки максимальных пусковых органов по	PH1 U1_1 MAKC -	230	5 - 250	1
напряжению U1_1 (Кв от 0,93 до 0,97), В	PH5 U1_1 MAKC	230	3 - 230	1
Уставки минимальных пусковых органов по	PH1 U1_1 МИН –	180	5 - 200	1
напряжению U1_1 (Кв от 1,03 до 1,07), В	PH5 U1_1 МИН	180	3 - 200	1
Уставки пусковых органов по напр	яжению обратной по	следователь	ности U2_1	
Уставки максимальных пусковых органов по	PH1 U2_1 MAKC -	220	5 250	1
напряжению U2_1 (Кв от 0,93 до 0,97), В	PH5 U2_1 MAKC	230	5 - 250	1
Уставки минимальных пусковых органов по	PH1 U2_1 МИН –	100	5 200	1
напряжению U2_1 (Кв от 1,03 до 1,07), В	PH5 U2_1 МИН	180	5 - 200	1
Уставки пусковых органов по нап	ряжению прямой пос	следовательн	ости U1_2	
Уставки максимальных пусковых органов по	PH1 U1_2 MAKC -	220	5 250	1
напряжению U1_2 (Кв от 0,93 до 0,97), В	PH5 U1_2 MAKC	230	5 - 250	1
Уставки минимальных пусковых органов по	PH1 U1_2 МИН –	100	5 200	1
напряжению U1_2 (Кв от 1,03 до 1,07), В	PH5 U1_2 МИН	180	5 - 200	1
Уставки пусковых органов по напр	яжению обратной по	следователь	ности U2_2	
Уставки максимальных пусковых органов по	PH1 U2 2 MAKC –	220	5 250	4
напряжению U2_2 (Кв от 0,93 до 0,97), В	PH5 U2_2 MAKC	230	5 - 250	1
Уставки минимальных пусковых органов по	PH1 U2_2 МИН –	100	5 200	
напряжению U2_2 (Кв от 1,03 до 1,07), В	PH5 U2_2 МИН	180	5 - 200	1
•	онтроля синхронизм	ıa (KC1)	•	•
Уставка по допустимой разнице напряжений				
прямой последовательности U1_1 и U1_2	KC1 dU	10	5 - 80	1
функции КС1, В				
Уставка по допустимой разнице частот	WC1 15	0.05	0.07. 2.00	0.01
напряжений 1U1 и 2U1 функции КС1, Гц	KC1 dF	0,05	0,05 - 2,00	0,01
•				

БМРЗ-159-ПЛК-01 ДИВГ.648228.039-16.01 РЭ

Уставка	Обозначение	Заводская установка	Диапазон значений	Дискрет- ность
Уставка по углу наличия синхронизма напряжений прямой последовательности U1_1 и U1_2 функции КС1, градус	КС1 Ф	30	2 - 60	1
Уставка допустимого уровня напряжения обратной последовательности для функции КС1, В	KC1 U2	10	5 - 80	1
Уставка по времени упреждения формирования сигнала наличия синхронизма функции КС1, с	KC1 T	0,00	0,00 - 0,50	0,01
Уставки функции к	онтроля синхронизм	ıa (KC2)		
Уставка по допустимой разнице напряжений прямой последовательности U1(1U1, 1U2) и U1(1U3, 1U4) функции КС2, В	KC2 dU	10	5 - 80	1
Уставка по допустимой разнице частот напряжений 1U1(1U2) и 1U3(1U4) функции КС2, Гц	KC2 dF	0,05	0,05 - 2,00	0,01
Уставка по углу наличия синхронизма напряжений прямой последовательности U1(1U1, 1U2) и U1(1U3, 1U4) функции КС2, градус	КС2 Ф	30	2 - 60	1
Уставка допустимого уровня напряжения обратной последовательности U2(1U1, 1U2) и U2(1U3, 1U4) для функции КС2, В	KC2 U2	10	5 - 80	1
Уставка по времени упреждения формирования сигнала наличия синхронизма функции КС2, с	KC2 T	0,00	0,00 - 0,50	0,01
Уставки функции к	онтроля синхронизм	1а (КСЗ)		
Уставка по допустимой разнице напряжений прямой последовательности U1(2U1, 2U2) и U1(2U3, 2U4) функции КС3, В	KC3 dU	10	5 - 80	1
Уставка по допустимой разнице частот напряжений 2U1(2U2) и 2U3(2U4) функции КС3, Гц	KC3 dF	0,05	0,05 - 2,00	0,01
Уставка по углу наличия синхронизма напряжений прямой последовательности U1(2U1, 2U2) и U1(2U3, 2U4) функции КС3, градус	КСЗ Ф	30	2 - 60	1
Уставка допустимого уровня напряжения обратной последовательности U2(2U1, 2U2) и U2(2U3, 2U4) для функции КС3, В	KC3 U2	10	5 - 80	1
Уставка по времени упреждения формирования сигнала наличия синхронизма функции КС3, с	KC3 T	0,00	0,00 - 0,50	0,01
функции ксэ, с				

БМР3-159-ПЛК-01 ДИВГ.648228.039-16.01 РЭ

Уставка	Обозначение	Заводская установка	Диапазон значений	Дискрет- ность		
Уставки функции контроля синхронизма (КС4)						
Уставка по допустимой разнице напряжений прямой последовательности U1(1U3, 1U4) и U1(2U3, 2U4) функции КС4, В	KC4 dU	10	5 - 80	1		
Уставка по допустимой разнице частот напряжений 1U3(1U4) и 2U3(2U4) функции КС4, Гц	KC4 dF	0,05	0,05 - 2,00	0,01		
Уставка по углу наличия синхронизма напряжений прямой последовательности U1(1U3, 1U4) и U1(2U3, 2U4) функции КС4, градус	КС4 Ф	30	2 - 60	1		
Уставка допустимого уровня напряжения обратной последовательности U2(1U3, 1U4) и U2(2U3, 2U4) для функции КС4, В	KC4 U2	10	5 - 80	1		
Уставка по времени упреждения формирования сигнала наличия синхронизма функции КС4, с	KC4 T	0,00	0,00 - 0,50	0,01		
Уставі	ки по времени					
Уставки по времени, с	TA01 – TA50	1,00	0,00 - 600,00	0,01		
Програ	ммные ключи ²⁾					
Программные ключи	SA01 – SA50	0	ключ	-		
Про	чие уставки					
Уставки по времени длительности осциллограммы, с	Тосц	5,00	0,10 - 60,00	0,01		
Выбор способа подключения: на линейное U - [V] / на фазное U - []	S173	0	ключ	-		

 $^{^{(1)}}$ Кв - коэффициент возврата; $^{(2)}$ Для программных ключей значение заводской установки 0 – программный ключ выведен, 1 – программный ключ введен.

3 Конфигурирование блока

3.1 Общие принципы

- 3.1.1 Возможности блока позволяют проектным и пусконаладочным организациям на основе логических сигналов фиксированных пусковых органов учитывать индивидуальные особенности проекта присоединения.
- 3.1.2 Программное обеспечение, созданное предприятием-изготовителем, является базовым функциональным программным обеспечением, в нем реализуются пусковые органы, сервисные функции и функции диагностики блока. Изменение БФПО осуществляется только на предприятии-изготовителе. Состав фиксированных пусковых органов приведен в приложении Б.
- 3.1.3 Дополнительные функциональные схемы, создаваемые для учета индивидуальных особенностей проекта присоединения, входят в состав программного модуля конфигурации (далее ПМК). Для создания ПМК следует использовать программный комплекс "Конфигуратор МТ". ПМК включает в себя:
 - уставки пусковых органов;
 - дополнительные функциональные схемы ПМК (далее схемы ПМК);
 - настройки связи блока с АСУ/ПЭВМ;
 - настройки функций синхронизации времени блока;
 - настройки таблицы подключений блока (рисунок 1);
 - настройки таблицы назначений блока (рисунок 2).
- 3.1.4 Таблица подключений блока позволяет использовать дискретные входы для привязки их к входным сигналам функциональных схем БФПО, перечень которых приведен в п. 3.2.5.
 - 3.1.5 Таблица назначений блока позволяет:
- использовать свободно назначаемые выходные реле для привязки к ним сигналов с дискретных входов блока;
- использовать свободно назначаемые выходные реле для привязки к ним логических сигналов функциональных схем;
 - создавать записи для журнала сообщений и журнала аварий;
 - выполнять настройку светоизлучающих диодов (светодиодов);
 - выполнять настройку состава осциллограмм.
- 3.1.6 Выходные сигналы функциональных схем БФПО и схем ПМК могут быть использованы в таблице назначений блока, для передачи в АСУ, а также для создания схем ПМК.
- 3.1.7 Программный комплекс "Конфигуратор МТ" предоставляет возможность установки паролей для разделения на следующие уровни доступа: служба РЗА (изменение уставок, просмотр и управление) и служба АСУ (изменение коммуникационных настроек).

3.2 Реализация

- 3.2.1 Для создания дополнительных функциональных схем, учитывающих особенности проекта присоединения, доступны следующие элементы:
 - дискретные входы, перечень которых приведен в таблице 3;
 - кнопки лицевой панели пульта "F1" "F5";
 - входные сигналы АСУ, перечень которых приведен в таблице 6;
- входные сигналы функциональных схем БФПО, перечень которых приведен в таблице 7;
- выходные сигналы функциональных схем БФПО, перечень которых приведен в таблице 8;
 - свободно назначаемые дискретные выходы, перечень которых приведен в таблице 4.

3.2.2 Назначение дискретных входов в таблице подключений блока производится в виде перекрестной связи между дискретным входом (графа) и входным сигналом функциональных схем БФПО (строка), как это показано на рисунке 1 (пример назначения свободно назначаемого дискретного входа "[Я6] Вход" на входной сигнал функциональных схем БФПО "Пуск осциллографа"). Допускается прямое либо инверсное подключение дискретного входа.

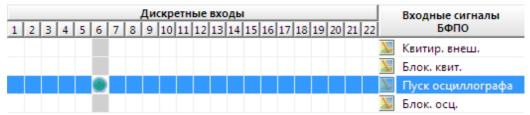


Рисунок 1 - Таблица подключений блока

3.2.3 Назначение выходных сигналов в таблице назначений блока производится в виде перекрестной связи между сигналом (строка) и назначаемой на него функцией (графа), как это показано на рисунке 2 (пример назначения выходного сигнала "Квитир. сигнал." на свободно назначаемое реле "[К8] Выход"). Допускается прямое назначение сигналов, с фиксацией сигнала до квитирования, а также подключение с миганием (для светодиодов).

Рисунок 2 - Таблица назначений блока

3.2.4 Входные сигналы АСУ, доступные для использования при создании дополнительных функциональных схем, приведены в таблице 6.

Таблица 6 - Входные сигналы АСУ

Наименование сигнала	Функция сигнала
Пуск осциллографа	Пуск осциллографа
Квитирование	Квитирование сигнализации
АСУ_Вход 1 – АСУ_Вход 30	Свободно назначаемые входы

3.2.5 Входные сигналы функциональных схем БФПО, доступные для использования при создании дополнительных функциональных схем, приведены в таблице 7.

Таблица 7 - Входные сигналы функциональных схем БФПО

Наименование сигнала	Функция сигнала
Квитир. внеш.	Сигнал квитирования сигнализации
Блок. квит.	Блокировка квитирования
Пуск осциллографа	Сигнал пуска осциллографа
Блок. осц.	Блокировка осциллографа
КС 1U1(1U2) и 1U3(1U4)	Разрешение работы функции контроля синхронизма между 1U1(1U2) и 1U3(1U4)
KC 2U1(2U2) и 2U3(2U4)	Разрешение работы функции контроля синхронизма между 2U1(2U2) и 2U3(2U4)
КС 1U3(1U4) и 2U3(2U4)	Разрешение работы функции контроля синхронизма между 1U3(1U4) и 2U3(2U4)

3.2.6 Выходные сигналы функциональных схем БФПО, доступные для использования при создании схем ПМК, в таблице назначений блока, а также для передачи в АСУ, приведены в таблице 8.

Таблица 8 - Выходные сигналы функциональных схем БФПО

		Номер		гнал доступе использовани			
	Наименование сигнала	рисунка в приложе- нии Б		таблице назначений блока	схемах ПМК	Функция сигнала	
1	ПО1 1U1 МАКС – ПО5 1U1 МАКС	Б.1	+	+	+	Максимальные пусковые органы по напряжению 1U1	
2	ПО1 1U1 МИН – ПО5 1U1 МИН	Б.1	+	+	+	Минимальные пусковые органы по напряжению 1U1	
3	ПО1 1U2 MAKC – ПО5 1U2 MAKC	Б.1	+	+	+	Максимальные пусковые органы по напряжению 1U2	
4	ПО1 1U2 МИН – ПО5 1U2 МИН	Б.1	+	+	+	Минимальные пусковые органы по напряжению 1U2	
5	ПО1 1U3 MAKC – ПО5 1U3 MAKC	Б.1	+	+	+	Максимальные пусковые органы по напряжению 1U3	
6	ПО1 1U3 МИН – ПО5 1U3 МИН	Б.1	+	+	+	Минимальные пусковые органы по напряжению 1U3	
7	ПО1 1U4 MAKC – ПО5 1U4 MAKC	Б.1	+	+	+	Максимальные пусковые органы по напряжению 1U4	
8	ПО1 1U4 МИН – ПО5 1U4 МИН	Б.1	+	+	+	Минимальные пусковые органы по напряжению 1U4	
9	ПО1 2U1 MAKC – ПО5 2U1 MAKC	Б.2	+	+	+	Максимальные пусковые органы по напряжению 2U1	
10	ПО1 2U1 МИН – ПО5 2U1 МИН	Б.2	+	+	+	Минимальные пусковые органы по напряжению 2U1	
11	ПО1 2U2 MAKC – ПО5 2U2 MAKC	Б.2	+	+	+	Максимальные пусковые органы по напряжению 2U2	
12	ПО1 2U2 МИН – ПО5 2U2 МИН	Б.2	+	+	+	Минимальные пусковые органы по напряжению 2U2	
13	ПО1 2U3 MAKC – ПО5 2U3 MAKC	Б.2	+	+	+	Максимальные пусковые органы по напряжению 2U3	
14	ПО1 2U3 МИН – ПО5 2U3 МИН	Б.2	+	+	+	Минимальные пусковые органы по напряжению 2U3	
15	ПО1 2U4 MAKC – ПО5 2U4 MAKC	Б.2	+	+	+	Максимальные пусковые органы по напряжению 2U4	
16	ПО1 2U4 МИН – ПО5 2U4 МИН	Б.2	+	+	+	Минимальные пусковые органы по напряжению 2U4	
17	ПО1 U1_1 MAKC – ПО5 U1_1 MAKC	Б.3	+	+	+	Максимальные пусковые органы по напряжению прямой последовательности U1_1	
18	ПО1 U1_1 МИН – ПО5 U1_1 МИН	Б.3	+	+	+	Минимальные пусковые органы по напряжению прямой последовательности U1_1	

Продолжение таблицы 8

	Номер Номер использования					
	Наименование сигнала	рисунка в приложе- нии Б	АСУ	таблице назначений блока	схемах ПМК	Функция сигнала
19	ПО1 U2_1 МАКС –	Б.3	+	+	+	Максимальные пусковые органы по напряжению обратной
1)	ПО5 U2_1 МАКС	D. 3	'	'	,	последовательности U2_1
20	ПО1 U2_1 МИН –	F 2				Минимальные пусковые орга-
20	ПО5 U2_1 МИН	Б.3	+	+	+	ны по напряжению обратной последовательности U2_1
	пот ит эмикс					Максимальные пусковые ор-
21	ПО1 U1_2 MAKC – ПО5 U1_2 MAKC	Б.3	+	+	+	ганы по напряжению прямой
						последовательности U1_2
22	ПО1 U1_2 МИН –	Б.3	+	+		Минимальные пусковые органы по напряжению прямой
22	ПО5 U1_2 МИН	Б.Э		Т	+	последовательности U1_2
	пот на амакс					Максимальные пусковые орга-
23	ПО1 U2_2 MAKC – ПО5 U2_2 MAKC	Б.3	+	+	+	ны по напряжению обратной
	1103 02_2 WAKC					последовательности U2_2
24	ПО1 U2_2 МИН –	Г.2				Минимальные пусковые орга-
24	ПО5 U2_2 МИН	Б.3	+	+	+	ны по напряжению обратной
						последовательности U2_2 Сигнал наличия синхронизма
25	Наличие синхр. 1	Б.4	+	+	+	между напряжениями U1_1 и
	Traini ine eminip. T			·		U1_2
						Сигнал наличия синхронизма
26	Наличие синхр. 2	Б.5	+	+	+	между напряжениями
						1U1(1U2) и 1U3(1U4)
27	H 2	Γ.				Сигнал наличия синхронизма
27	Наличие синхр. 3	Б.6	+	+	+	между напряжениями 2U1(2U2) и 2U3(2U4)
						Сигнал наличия синхронизма
28	Наличие синхр. 4	Б.7	+	+	+	между напряжениями
						1U3(1U4) и 2U3(2U4)
29	Квитир. сигнал.	-	+	+	+	Квитирование сигнализации
30	Реле Отказ БМРЗ	-	+	+	+	Сигнал на реле "Отказ БМРЗ"
31	Отказ ПМК	-	+	+	+	Отказ алгоритмов пользовате-
						ля Синхронизация времени от
32	Синхр. от PPS	-	+	+	+	PPS

В соответствии с таблицей 8 сигналы на рисунках функциональных схем алгоритмов приложения Б дополнительно маркированы следующим образом: (А,Т,П). Наличие символа А обозначает возможность использования сигнала в АСУ, Т - в таблице назначений блока, П - при создании схем ПМК.

3.2.7 Описание функциональных элементов, процесс создания функциональных схем, приведены в руководстве оператора "Программный комплекс "Конфигуратор - МТ" Руководство оператора".

4 Описание функций блока

4.1 Пусковые органы по измеренным напряжениям

- 4.1.1 Функциональные схемы алгоритмов пусковых органов по измеренным напряжениям приведены на рисунках 5.1^{1}) и 5.2.
- 4.1.2 Срабатывание пусковых органов по измеренным напряжениям происходит при превышении значением измеренного напряжения соответствующей уставки. Возврат пусковых органов происходит с учетом коэффициента возврата.

4.2 Пусковые органы по симметричным составляющим напряжений

4.2.1 Функциональная схема алгоритма пусковых органов по симметричным составляющим напряжений приведена на рисунке Б.3.

ВНИМАНИЕ: ДЛЯ ПРАВИЛЬНОГО РАСЧЕТА СИММЕТРИЧНЫХ СОСТАВЛЯЮЩИХ НАПРЯЖЕНИЙ НЕОБХОДИМО СЛЕДУЮЩЕЕ ПОДКЛЮЧЕНИЕ АНАЛОГОВЫХ ВХОДОВ БЛОКА: К АНАЛОГОВОМУ ВХОДУ 1U1 ПОДКЛЮЧАЕТСЯ НАПРЯЖЕНИЕ ФАЗЫ А, К АНАЛОГОВОМУ ВХОДУ 1U2 (2U2) ПОДКЛЮЧАЕТСЯ НАПРЯЖЕНИЕ ФАЗЫ В, К АНАЛОГОВОМУ ВХОДУ 1U3 (2U3) ПОДКЛЮЧАЕТСЯ НАПРЯЖЕНИЕ ФАЗЫ С!

4.2.2 Срабатывание пусковых органов по симметричным составляющим напряжений происходит при превышении значением напряжения прямой или обратной последовательности, соответствующей уставки. Возврат пусковых органов происходит с учетом коэффициента возврата.

4.3 Контроль синхронизма при подключении блока на фазные напряжения

- 4.3.1 Функциональная схема алгоритма контроля синхронизма приведена на рисунке Б.4.
- 4.3.2 Функция контроля синхронизма обеспечивает формирование сигнала наличия синхронизма между напряжениями прямой последовательности U1_1 и U1_2.
 - 4.3.3 Напряжения считаются синхронными, если выполнены следующие условия:
 - напряжения 1U1, 1U2, 1U3, 2U1, 2U2, 2U3 превышают значение 10 B;
- напряжения обратной последовательности $U2_1$ и $U2_2$ не превышают уставку "КС1 U2":
 - разность напряжений прямой последовательности не превышает уставку "KC1 dU";
 - разность частот напряжений 1U1 и 2U1 не превышает уставку "KC1 dF";
- модуль угла между напряжениями прямой последовательности не превышает уставку "КС1 Φ ".
- 4.3.4 При вводе значения уставки "КС1 Т", отличной от нуля, активизируется функция улавливания синхронизма. Сигнал наличия синхронизма формируется с упреждением момента наступления синхронизма напряжений на время "КС1 Т". Данная функция может быть использована для формирования команды управления коммутационным аппаратом с улавливанием синхронизма.

4.4 Контроль синхронизма при подключении блока на линейные напряжения

- 4.4.1 Функциональные схемы алгоритма контроля синхронизма (КС) для КС2 (КС3, КС4) при подключении блока на линейные напряжения (программный ключ **S173**) приведены на рисунке Б.5 (Б.6, Б.7).
- 4.4.2 Функции контроля синхронизма КС2, КС3, КС4 обеспечивают формирование сигнала наличия синхронизма между напряжениями прямой последовательности: для КС2 U1(1U1, 1U2) и U1(1U3, 1U4), для КС3 U1(2U1, 2U2) и U1(2U3, 2U4), для КС4 U1(1U3, 1U4) и U1(2U3, 2U4).

 $^{^{1)}}$ Функциональные схемы алгоритмов приведены в приложении Б (рисунки Б.1 - Б.7).

- 4.4.3 Напряжения считаются синхронными, если выполнены следующие условия, дальнейшее описание приведено для функции КС2 для функций КС3 и КС4 условия аналогичные:
 - напряжения 1U1, 1U2, 1U3, 1U4, 2U1, 2U2, 2U3, 2U4 превышают значение 10 B;
- напряжения обратной последовательности U2(1U1, 1U2) и U2(1U3, 1U4) не превышают уставку "КС2 U2";
 - разность напряжений прямой последовательности не превышает уставку "КС2 dU";
 - разность частот напряжений 1U1 и 1U3 не превышает уставку "КС2 dF";
- модуль угла между напряжениями прямой последовательности не превышает уставку "КС2 Φ ".
- 4.4.4 При вводе значения уставки "КС2 Т", отличной от нуля, активизируется функция улавливания синхронизма. Сигнал наличия синхронизма формируется с упреждением момента наступления синхронизма напряжений на время "КС2 Т". Данная функция может быть использована для формирования команды управления коммутационным аппаратом с улавливанием синхронизма.
- 4.4.5 Ввод функций контроля синхронизма осуществляется при помощи сигналов: "КС 1U1(1U2) и 1U3(1U4)", "КС 2U1(2U2) и 2U3(2U4)", "КС 1U3(1U4) и 2U3(2U4)" для КС2, КС3 и КС4 соответственно.
- 4.4.6 Для обеспечения правильной работы в определенный момент времени может использоваться только одна из функций КС2, КС3 или КС4. Для входных логических сигналов, приведенных в п. 4.4.5, необходимо предусмотреть взаимные блокировки в схеме ПМК.

4.5 Квитирование сигнализации

- 4.5.1 Функция квитирования сигнализации предназначена для сброса сигналов с выходных дискретных сигналов и светодиодов при назначении на них сигналов БФПО или ПМК с фиксацией сигнала (п. 3.2.3).
- 4.5.2 Квитирование сигнализации производится с пульта нажатием кнопки "КВИТ", по сигналу "Квитир. внеш." или подачей соответствующей команды от АСУ или ПЭВМ.
- 4.5.3 Блокировка функции квитирования сигнализации осуществляется по логическому сигналу "Блок. квит.".

4.6 Измерение параметров сети

4.6.1 В блоке осуществляется измерение или вычисление параметров сети в соответствии с таблицей 9.

Таблица 9 - Параметры сети

Наименование параметра	Обозначение	Единица измерения	Примечание
Действующее значение напряжения	1U1	В	-
Действующее значение напряжения	1U2	В	-
Действующее значение напряжения	1U3	В	-
Действующее значение напряжения	1U4	В	-
Действующее значение напряжения	2U1	В	-
Действующее значение напряжения	2U2	В	-
Действующее значение напряжения	2U3	В	-
Действующее значение напряжения	2U4	В	-
Действующее значение напряжения	U1_1	В	Вычисляется по напряжениям
прямой последовательности	01_1	Б	1U1, 1U2 и 1U3
Действующее значение напряжения	U2_1	В	Вычисляется по напряжениям
обратной последовательности	02_1	В	1U1, 1U2 и 1U3

Наименование параметра	Обозначение	Единица измерения	Примечание
Действующее значение напряжения нулевой последовательности	3U0_1	В	Вычисляется по напряжениям 1U1, 1U2 и 1U3
Действующее значение напряжения прямой последовательности	U1_2	В	Вычисляется по напряжениям 2U1, 2U2 и 2U3
Действующее значение напряжения обратной последовательности	U2_2	В	Вычисляется по напряжениям 2U1, 2U2 и 2U3
Действующее значение напряжения нулевой последовательности	3U0_2	В	Вычисляется по напряжениям 2U1, 2U2 и 2U3
Действующее значение напряжения прямой последовательности	U1(1U1, 1U2)	В	Вычисляется по напряжениям 1U1, 1U2
Действующее значение напряжения обратной последовательности	U2(1U1, 1U2)	В	Вычисляется по напряжениям 1U1, 1U2
Действующее значение напряжения прямой последовательности	U1(1U3, 1U4)	В	Вычисляется по напряжениям 1U3, 1U4
Действующее значение напряжения обратной последовательности	U2(1U3, 1U4)	В	Вычисляется по напряжениям 1U3, 1U4
Действующее значение напряжения прямой последовательности	U1(2U1, 2U2)	В	Вычисляется по напряжениям 2U1, 2U2
Действующее значение напряжения обратной последовательности	U2(2U1, 2U2)	В	Вычисляется по напряжениям 2U1, 2U2
Действующее значение напряжения прямой последовательности	U1(2U3, 2U4)	В	Вычисляется по напряжениям 2U3, 2U4
Действующее значение напряжения обратной последовательности	U2(2U3, 2U4)	В	Вычисляется по напряжениям 2U3, 2U4
Частота сети	F	Гц	Вычисляется по напряжениям 1U1, 1U2, 1U3, 1U4, 2U1, 2U2, 2U3, 2U4, превышающим значение 10 В

4.7 Самодиагностика блока

- 4.7.1 В блоке обеспечивается оперативный контроль работоспособности (самодиагностика) в течение всего времени работы.
- 4.7.2 Результаты самодиагностики блока, в соответствии с таблицей 10, можно наблюдать на дисплее пульта, в программном комплексе "Конфигуратор МТ" или в АСУ.

Таблица 10 - Результаты самодиагностики

Наименование параметра самодиагностики	Описание параметра
Отказ БМРЗ	Отказ блока
Отказ ПМК	Отказ программного модуля конфигурации
Ошибка RTC	Ошибка часов реального времени
Ошибка 01	Ошибка функционирования, код 01
Ошибка 08	Ошибка функционирования, код 08
Ошибка 10	Ошибка функционирования, код 10

 $4.7.3~\mathrm{B}$ блоке фиксируется параметр "Моточасы блока" - количество часов, которое блок находился в работе после установки БФПО.

4.8 Осциллограф

- 4.8.1 Блок обеспечивает формирование осциллограмм событий, созданных пользователем в ПМК. Пуск осциллографа происходит по переднему фронту следующих сигналов:
 - по логическому сигналу "Пуск осциллографа";
 - по команде из АСУ "Пуск осциллографа".
- 4.8.2 Длительность записи осциллограммы задается уставкой по времени "Тосц". Запись осциллограммы продлевается на время "Тосц" при каждом пуске осциллографа.
- 4.8.3 Максимальная длительность осциллограммы не может превышать 120 с. Если длительность осциллограммы превышает 120 с, запись данной осциллограммы прекращается и начинается запись новой осциллограммы.
- 4.8.4 Состав записываемых сигналов настраивается при помощи программного комплекса "Конфигуратор МТ". Максимальное количество записываемых сигналов в одной осциллограмме 200.

Для осциллографирования доступны следующие сигналы:

- дискретные входы;
- логические входы из таблицы 7;
- логические выходы из таблицы 8;
- логические выходы ПМК;
- кнопки на лицевой панели пульта.
- 4.8.5 Блокировка осциллографа осуществляется логическим сигналом "Блок. осц.".

Приложение А

(обязательное)

Схема электрическая подключения

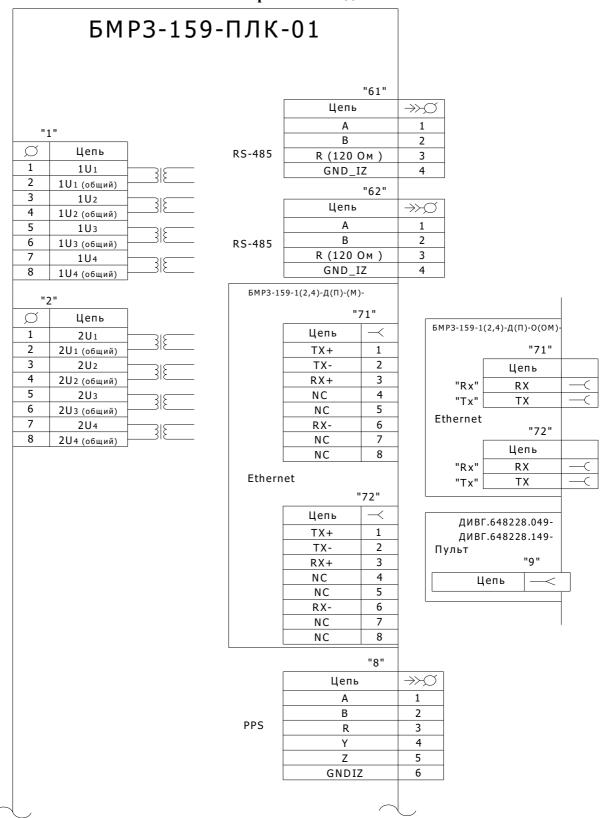
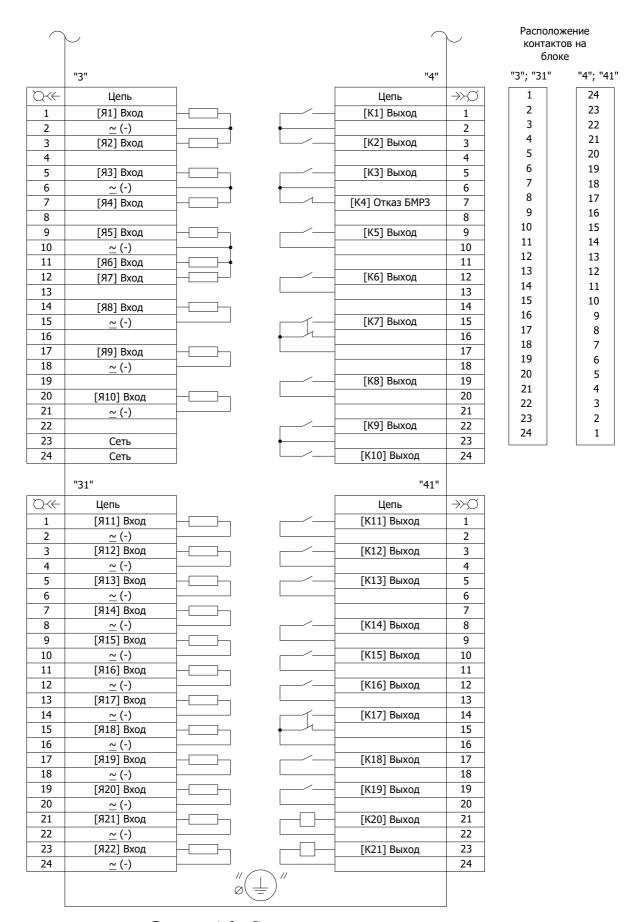
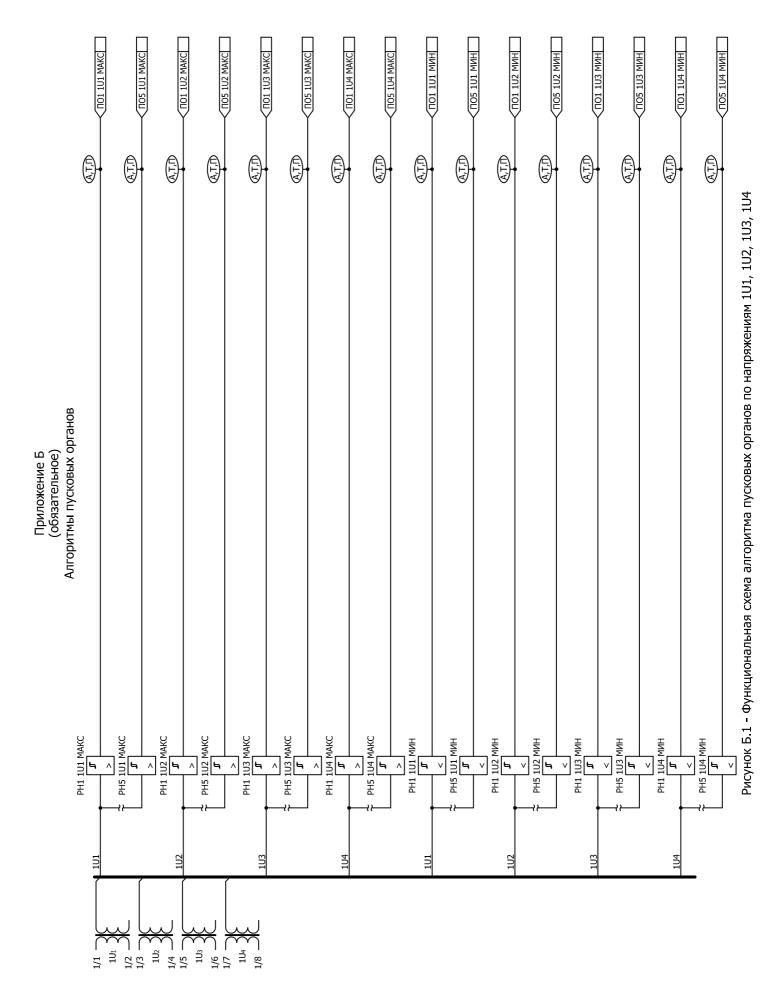
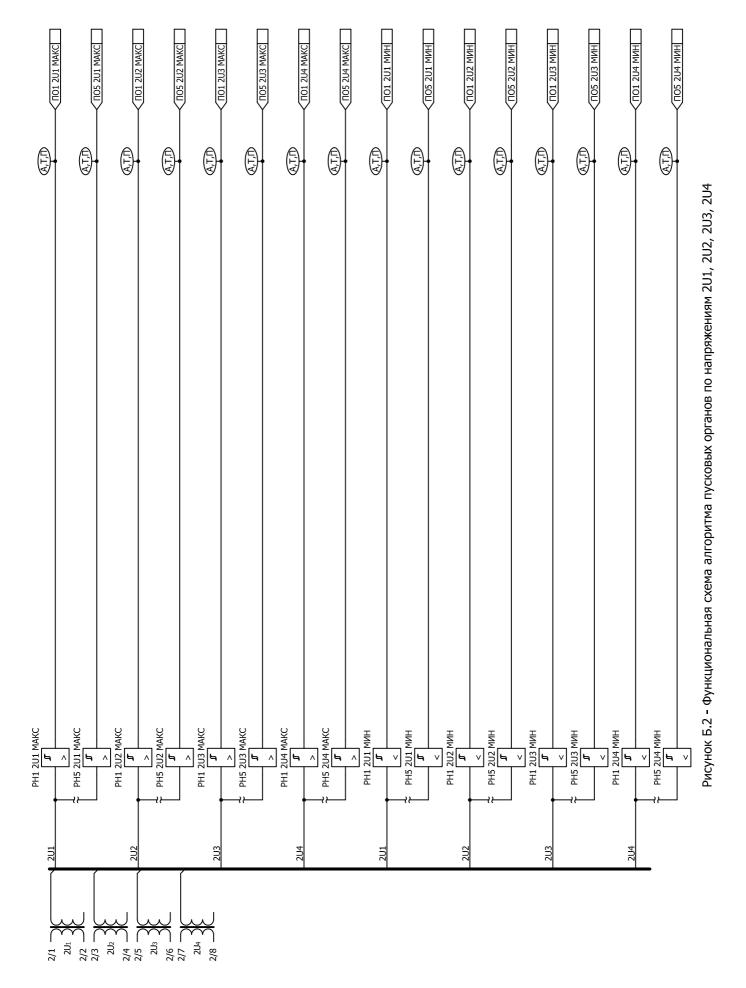
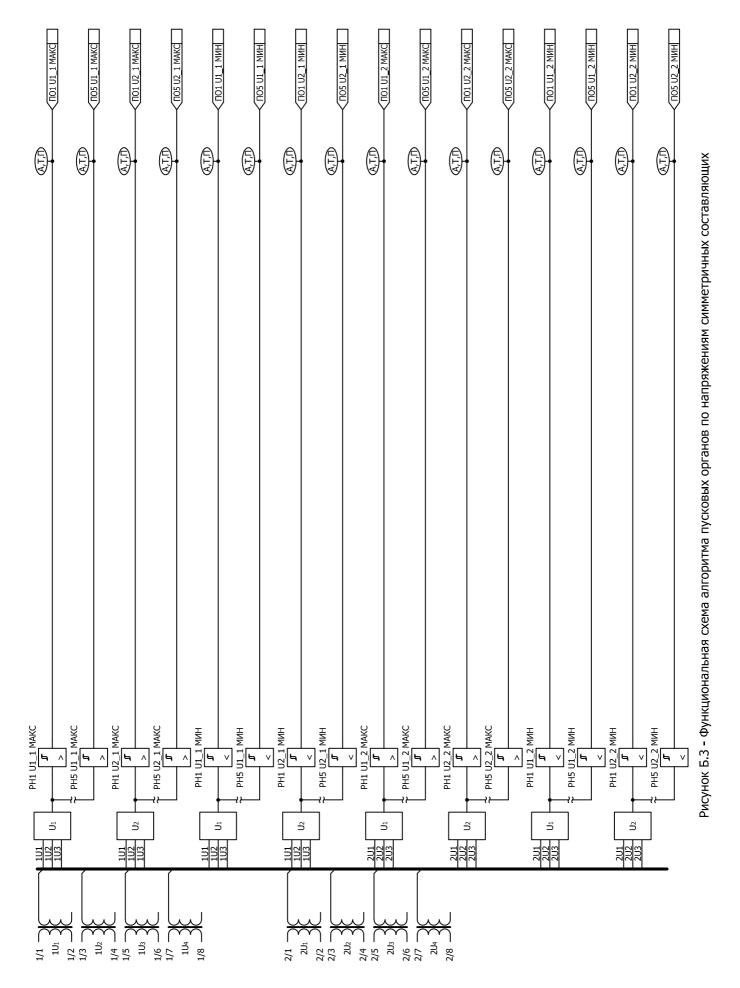
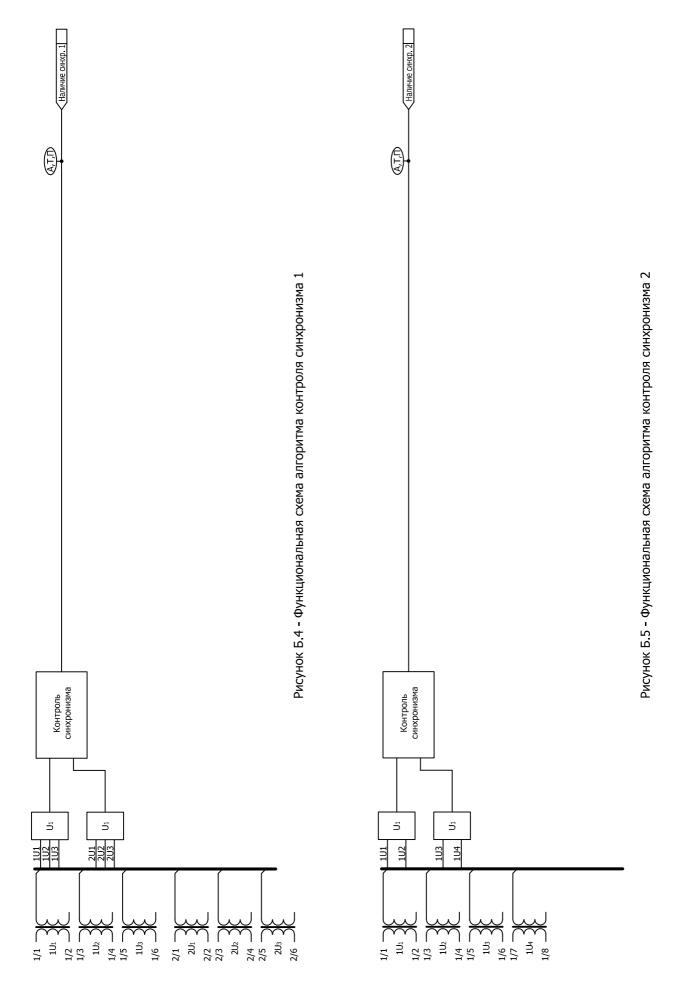
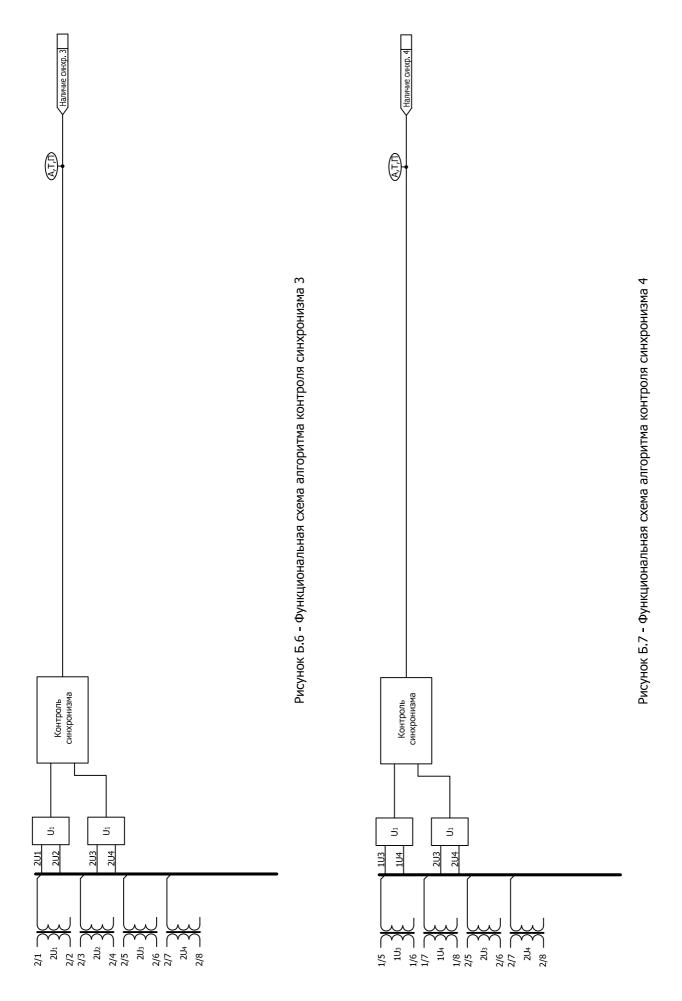


Рисунок А.1 - Схема электрическая подключения


Рисунок А.2 - Схема электрическая подключения

БМРЗ-159-ПЛК-01 ДИВГ.648228.039-16.01

Приложение В

(обязательное)

Адресация параметров в АСУ

- В.1 Протоколы информационного обмена согласно ГОСТ Р МЭК 60870-5-101-2006 и ГОСТ Р МЭК 60870-5-104-2004
- В.1.1 Перечень параметров, доступных для передачи в АСУ по протоколам информационного обмена согласно ГОСТ Р МЭК 60870-5-101-2006 и ГОСТ Р МЭК 60870-5-104-2004, а также порядок адресации этих параметров приведены в таблице В.1.

Настройка протоколов информационного обмена осуществляется в программном комплексе "Конфигуратор - МТ".

В.1.2 Описание возможностей блока при подключении к АСУ содержится в п. 1.6.12 руководства по эксплуатации ДИВГ.648228.029 РЭ.

Таблица В.1 - Адресация параметров в протоколах информационного обмена согласно ГОСТ Р МЭК 60870-5-101-2006 и ГОСТ Р МЭК 60870-5-104-2004

Наименование группы параметров в программном комплексе "Конфигуратор - МТ"	Диапазон доступных адресов ¹⁾	Параметры для передачи
Дискретные входы	1 - 127	Все дискретные входы из таблицы 3
Двухэлементная теле-		Все дискретные входы из таблицы 3
сигнализация		Все дискретные выходы из таблицы 4
	129 - 255	Выходные сигналы функциональных схем БФПО,
		приведенные в таблице 8
		Выходные сигналы функциональных схем ПМК
Дискретные выходы	257 - 383	Все дискретные выходы из таблицы 4
Выходные сигналы		Все дискретные входы из таблицы 3
БФПО, ПМК (служебная	385 - 511	Выходные сигналы функциональных схем БФПО,
информация)	303 - 311	приведенные в таблице 8
		Выходные сигналы функциональных схем ПМК
Параметры сети ²⁾	513 - 639	Все параметры из таблицы 9
Расчётные параметры сети ²⁾	641 - 767	Все параметры из таблицы 9
Одиночные события ре-		Все дискретные входы из таблицы 3
лейной защиты		Все дискретные выходы из таблицы 4
	769 - 895	Выходные сигналы функциональных схем БФПО,
		приведенные в таблице 8
		Выходные сигналы функциональных схем ПМК
Накопительная инфор-		Ошибка 01 из таблицы 10
мация	897 - 1023	Ошибка 08 из таблицы 10
	897 - 1023	Ошибка 10 из таблицы 10
		Моточасы блока
Самодиагностика блока	1153 - 1279	Сигнал "Ошибка RTC" из таблицы 10
Телеуправление	1281 - 1407	Все входные сигналы АСУ из таблицы 6

Наименование группы параметров в программном комплексе "Конфигуратор - МТ"	Диапазон доступных адресов ¹⁾	Параметры для передачи
Уставки защит и автоматики	1409 - 1535	Все уставки пусковых органов из таблицы 5
Уставки временные	1537 - 1663	Все уставки по времени из таблицы 5
Уставки ключи	1665 - 1791	Все программные ключи из таблицы 5
Уставки целочисленные	1793 - 1919	-
Уставки коэффициенты	1921	Коэффициент трансформации напряжения 1U1
трансформации ³⁾	1922	Коэффициент трансформации напряжения 1U2
	1923	Коэффициент трансформации напряжения 1U3
	1924	Коэффициент трансформации напряжения 1U4
	1925	Коэффициент трансформации напряжения 2U1
	1926	Коэффициент трансформации напряжения 2U2
	1927	Коэффициент трансформации напряжения 2U3
	1928	Коэффициент трансформации напряжения 2U4
Срабатывание защит		Выходные сигналы функциональных схем БФПО,
	2179	приведенные в таблице 8
		Выходные сигналы функциональных схем ПМК
1) 🛕		

¹⁾ Адресация внутри группы должна начинаться с минимально возможного адреса и не должна содержать пустых мест. Порядок следования параметров в группе произвольный.

В.2 Протоколы информационного обмена MODBUS-RTU и MODBUS-TCP

B.2.1 Перечень параметров, доступных для передачи в АСУ по протоколам информационного обмена MODBUS-RTU и MODBUS-TCP, а также порядок адресации этих параметров приведены в таблице B.2.

Настройка протоколов информационного обмена осуществляется в программном комплексе "Конфигуратор - МТ".

²⁾ Могут передаваться как первичные, так и вторичные значения величин.

 $^{^{3)}}$ Коэффициенты трансформации имеют фиксированную заводскую адресацию и обязательны для передачи в ACУ.

Таблица В.2 - Адресация параметров в протоколах информационного обмена MODBUS-RTU и MODBUS-TCP

Наименование группы параметров в программном комплексе "Конфигуратор - МТ"	Диапазон доступных адресов ¹⁾	Параметры для передачи				
Дискретные входы		Все дискретные входы из таблицы 3				
(Discrete Inputs)		Все дискретные выходы из таблицы 4				
	1 - 535	Выходные сигналы функциональных схем БФПО,				
		приведенные в таблице 8				
		Выходные сигналы функциональных схем ПМК				
Битовые сигналы	1 - 535	Все входные сигналы АСУ из таблицы 6				
(Coils)	1 - 333	Все программные ключи из таблицы 5				
Входные регистры		Все параметры ²⁾ из таблицы 9				
(Input Registers)		Ошибка 01 из таблицы 10				
	1 - 535	Ошибка 08 из таблицы 10				
		Ошибка 10 из таблицы 10				
		Сигнал "Ошибка RTC" из таблицы 10				
		Моточасы блока				
Регистры хранения	1 - 527	Все уставки пусковых органов из таблицы 5				
(Holding Registers) ³⁾	1 - 327	Все уставки по времени из таблицы 5				
	65528	Коэффициент трансформации напряжения 1U1				
	65529	Коэффициент трансформации напряжения 1U2				
	65530	Коэффициент трансформации напряжения 1U3				
	65531	Коэффициент трансформации напряжения 1U4				
	65532	Коэффициент трансформации напряжения 2U1				
	65533	Коэффициент трансформации напряжения 2U2				
	65534	Коэффициент трансформации напряжения 2U3				
1)	65535	Коэффициент трансформации напряжения 2U4				

¹⁾ Порядок следования параметров в группе произвольный.

В.3 Протокол информационного обмена согласно ГОСТ Р МЭК 60870-5-103-2005

В.3.1 Перечень параметров, доступных для передачи в АСУ по протоколу информационного обмена согласно ГОСТ Р МЭК 60870-5-103-2005, а также порядок адресации параметров приведены в таблице В.3.

Настройка протокола информационного обмена осуществляется в программном комплексе "Конфигуратор - МТ".

Для передачи сигналов согласно протоколу необходимо задать соответствие между описаниями сигналов ГОСТ Р МЭК 60870-5-103-2005 и выходными сигналами БФПО, ПМК. В графе "Выходные сигналы БФПО, ПМК" таблицы В.3 приведены рекомендуемые выходные сигналы БФПО.

²⁾ Могут передаваться как первичные, так и вторичные значения величин.

³⁾ Коэффициенты трансформации имеют фиксированную заводскую адресацию и обязательны для передачи в АСУ.

Таблица В.3 - Адресация параметров в протоколе информационного обмена согласно ГОСТ Р МЭК 60870-5-103-2005

GIN	Описание сигнала согласно ГОСТ Р МЭК 60870-5-103-2005	ASDU	GI	FUN	INF	Выходные сигналы БФПО, ПМК		
0х0100 Параметры сети								
0x0101	Ток фазы В	3.1	_	128	144	-		
0x0101	Ток фазы В	3.2	_	128	145	-		
	•					_		
0x0103	Напряжение А-В	3.2	-	128	145	-		
0x0104	Ток фазы В	3.3	-	128	146	-		
0x0105	Напряжение А-В	3.3	-	128	146	-		
0x0106	Активная мощность Р	3.3	-	128	146	-		
0x0107	Реактивная мощность Q	3.3	-	128	146	-		
0x0108	Ток нейтрали In	3.4	-	128	147	-		
0x0109	Напряжение нейтрали Ven	3.4	-	128	147	-		
0x010A	Ток фазы А	9	-	128	148	-		
0x010B	Ток фазы В	9	-	128	148	-		
0x010C	Ток фазы С	9	-	128	148	-		
0x010D	Напряжение А-Е	9	-	128	148	-		
0x010E	Напряжение В-Е	9	-	128	148	-		
0x010F	Напряжение С-Е	9	-	128	148	-		
0x0110	Активная мощность Р	9	-	128	148	-		
0x0111	Реактивная мощность Q	9	_	128	148	-		
0x0112	Частота f	9	-	128	148	"F, Гц"		
0x0200	Состояние					1 / 1		
	вация состояний в направлени	ии контро	пл					
0x0201	АПВ активно	1	+	160	16	_		
0x0201 $0x0202$	Светодиоды выключены	1	-	160	19	"Квитир. сигнал."		
	Местная установка пара-	1				Квитир. сигнал.		
0x0203	метров	1	+	160	22	-		
0x0204	Характеристика 1	1	+	128	23	-		
0x0205	Характеристика 2	1	+	128	24	-		
0x0206	Характеристика 3	1	+	128	25	-		
0x0207	Характеристика 4	1	+	128	26	-		
0x0208	Вспомогательный вход 1	1	+	160	27	-		
0x0209	Вспомогательный вход 2	1	+	160	28	-		
0x020A	Вспомогательный вход 3	1	+	160	29	-		
0x020B	Вспомогательный вход 4	1	+	160	30	-		
Контроли	ьная информация в направлен	нии контр	ппо					
0x020C	Контроль измерений тока	1	+	160	32	-		
0x020D	Контроль измерений напряжения	1	+	160	33	-		
0x020E	Контроль последователь-	1	+	160	35	-		
0x020F	Контроль цепи отключе-	1	+	160	36	-		
0x0210	ния Работа резервной токовой защиты	1	+	128	37	-		
0x0211	Повреждение предохранителя трансформатора	1	+	160	38	_		

GIN	Описание сигнала согласно ГОСТ Р МЭК 60870-5-103-2005	ASDU	GI	FUN	INF	Выходные сигналы БФПО, ПМК
0x0212	Функционирование теле- защиты нарушено	1	+	160	39	-
0x0213	Групповое предупреждение	1	+	160	46	-
0x0214	Групповой аварийный сигнал	1	+	160	47	-
Сигнализ	вация о замыкании на землю	в направл	ении	контрол	RI	
0x0215	Замыкание на землю фа- зы А	1	+	160	48	-
0x0216	Замыкание на землю фа- зы В	1	+	160	49	-
0x0217	Замыкание на землю фа- зы С	1	+	160	50	-
0x0218	Замыкание на землю на линии (впереди)	1	+	160	51	-
0x0219	Замыкание на землю на шинах (позади)	1	+	160	52	-
Сигнализ	вация о повреждениях в напр	авлении і	контро	ЯПС		
0x021A	Запуск защиты, фаза А	2	+	160	64	-
0x021B	Запуск защиты, фаза В	2	+	160	65	-
0x021C	Запуск защиты, фаза С	2	+	160	66	-
0x021D	Запуск защиты, нулевая последовательность	2	+	160	67	-
0x021E	Общее отключение	2	-	128	68	-
0x021F	Отключение фазы А	2	-	160	69	-
0x0220	Отключение фазы В	2	-	160	70	-
0x0221	Отключение фазы С	2	-	160	71	-
0x0222	Отключение резервной защитой I>>	2	-	128	72	-
0x0223	Повреждение на линии	2	-	160	74	
0x0224	Повреждение на шинах	2	-	128	75	1 -
0x0225	Передача сигнала теле- защиты	2	-	160	76	-
0x0226	Прием сигнала телезащиты	2	-	160	77	-
0x0227	Зона 1	2	-	128	78	-
0x0228	Зона 2	2	-	128	79	-
0x0229	Зона 3	2	-	128	80	-
0x022A	Зона 4	2	-	128	81	-
0x022B	Зона 5	2	-	128	82	-
0x022C	Зона 6	2	-	128	83	-
0x022D	Общий запуск	2	+	160	84	-
0x022E	Отказ выключателя	2	-	160	85	-
0x022F	Отключение I>	2	_	160	90	-
0x0230	Отключение I>>	2	-	160	91	-
0x0231	Отключение In>	2	-	160	92	-
0x0232	Отключение In>>	2	_	160	93	-
UXUZ3Z	Отключение 11122		-	100	93	-

GIN	Описание сигнала со- гласно ГОСТ Р МЭК 60870-5-103-2005	ASDU	GI	FUN	INF	Выходные сигналы БФПО, ПМК
Сигнализ	ация о работе АПВ в направ:	пении ког	троля			
CHITIGATHS	Выключатель включен	lemm kol	1100313			
0x0233	при помощи АПВ	1	-	160	128	-
0x0234	Выключатель включен при помощи АПВ с задержкой	1	-	160	129	-
0x0235	АПВ заблокировано	1	+	160	130	-
0x0300	Дискретные входы и выход	-	<u> </u>	100	150	
	ые входы	,DI				
0х0301- 0х0380	Частный диапазон	1	% ¹⁾	*	*	Все дискретные входы из таблицы 3
Дискретн	ње выходы					
0x0381- 0x03FF	Частный диапазон	1	*	*	*	Все дискретные выходы из таблицы 4
0x0400	Выходные сигналы БФПО,	ПМК		1	l	
0x0401- 0x04C0	Частный диапазон	1	*	*	*	Выходные сигналы функциональных схем БФПО, приведенные в таблице 8. Выходные сигналы функциональных схем ПМК
0x04C1- 0x04FF	Частный диапазон	2	*	*	*	Выходные сигналы функциональных схем БФПО, приведенные в таблице 8. Выходные сигналы функциональных схем ПМК
0x0500	Телеуправление	•				
0x0501	АПВ	20	-	160	16	-
0x0502	Выключение светодиодов	20	-	160	19	Команда АСУ "Квитирование"
0x0503	Активизировать характеристику 1	20	-	128	23	-
0x0504	Активизировать характеристику 2	20	-	128	24	-
0x0505	Активизировать характеристику 3	20	-	128	25	-
0x0506	Активизировать характеристику 4	20	1	128	26	-
0x0507- 0x052D	Частный диапазон	20	_	*	*	Все входные сигналы АСУ из таблицы 6
0x0600	Самодиагностика блока					
0x0601- 0x0620	Частный диапазон	1	*	*	*	"Реле Отказ БМРЗ", "Отказ ПМК"
0x0A00	Программные ключи					
0x0A01- 0x0AFF	Частный диапазон	-	-	-	-	Все программные ключи из таблицы 5
0x0B00	Программные ключи (прод	олжение)				
0x0B01- 0x0BFF	Частный диапазон	-	-	-	-	Все программные ключи из таблицы 5

БМР3-159-ПЛК-01 ДИВГ.648228.039-16.01 РЭ

GIN	Описание сигнала согласно ГОСТ Р МЭК 60870-5-103-2005	ASDU	GI	FUN	INF	Выходные сигналы БФПО, ПМК
0x0C00	Уставки защит и автоматики					
0x0C01- 0x0CFF	Частный диапазон	1	1	-	-	Все уставки пусковых органов из таблицы 5
0x0D00	Уставки по времени					
0x0D01- 0x0DFF	Частный диапазон	-	-	-	-	Все уставки по времени из таблицы 5
0x0E00	Целочисленные уставки защит и автоматики					
0x0E01- 0x0EFF	Частный диапазон	-	1	-	-	-
0x0F00	Коэффициент трансформации ²⁾					
0x0F01	Частный диапазон	-	ı	-	-	Ктр 1U1
0x0F02	Частный диапазон	ı	ı	-	-	Ктр 1U2
0x0F03	Частный диапазон	-	-	-	-	Ктр 1U3
0x0F04	Частный диапазон	1	ı	-	-	Ктр 1U4
0x0F05	Частный диапазон	-	-	-	-	Ктр 2U1
0x0F06	Частный диапазон	1	-	-	-	Ктр 2U2
0x0F07	Частный диапазон	-	-	-	-	Ктр 2U3
0x0F08	Частный диапазон	-	-	-	-	Ктр 2U4

^{1) 🛠 -} параметр настраивается в программном комплексе "Конфигуратор - МТ".

В.4 Протокол информационного обмена согласно МЭК 61850

В.4.1 Перечень и адресация основных параметров, доступных для передачи по протоколу информационного обмена согласно МЭК 61850 ч. 6, 7-1, 7-2, 7-3, 7-4 (редакция 2), МЭК 61850-8-1-2011 сообщениями MMS и сообщениями GOOSE, приведены в таблице В.4. Полный состав и структура передаваемой информации приведены в файле ICD, входящем в состав БФПО.

Уставки пусковых органов, уставки по времени и программные ключи представлены:

- в логических узлах "TVTR" коэффициенты трансформации трансформаторов напряжения;
- в логических узлах с префиксом "Set..." уставки пусковых органов, уставки по времени, программные ключи.

Измеряемые величины передаются во вторичных значениях. Значения уставок по времени передаются в миллисекундах. Значения остальных уставок передаются в единицах, указанных в настоящем РЭ.

Для назначаемых сигналов и команд АСУ логического узла "User_GAPC1" в программном комплексе "Конфигуратор - МТ" может быть задано соответствие сигналам БФПО и ПМК.

Для передачи и приема сигналов сообщениями GOOSE в блоке предусмотрены назначаемые виртуальные входы и назначаемые виртуальные выходы. Назначение входных и выходных сигналов БФПО и ПМК на виртуальные входы и выходы осуществляется в программном комплексе "Конфигуратор - МТ".

²⁾ Коэффициенты трансформации имеют фиксированную заводскую адресацию и обязательны для передачи в АСУ.

Таблица В.4 - Адресация основных параметров в протоколе информационного обмена согласно ГОСТ Р МЭК 61850

Адрес FCDA	Тип	Параметр					
LD0/LLN0/Health/stVal	ENUMERATED	Отказ БМРЗ, отказ ПМК					
LD0/LPHD1/PhyHealth/stVal	ENUMERATED	Отказ БМРЗ, отказ ПМК					
LD0/LLN0/LEDRs	ENUMERATED	Квитирование сигнализации					
LD0/RDRE1/RcdStr/stVal	BOOLEAN	Работа осциллографа					
LD0/RDRE1/RcdMade/stVal	BOOLEAN	Наличие новых осциллограмм					
LD0/RDRE1/RcdTrg	SP Control	Команда пуска осциллографа					
LD0/A25_RSYN1/Rel/stVal	BOOLEAN	Наличие синхронизма напряжений U1_1 и					
		U1_2					
LD0/A25_RSYN1/Blk/stVal	BOOLEAN	Отсутствие условий синхронизма					
Измеряемые параметры сети							
LD0/Frq_MMXN1/Hz/mag/f	FLOAT32	Частота сети, Гц					
LD0/Aux1_MMXN1/Vol/mag/f	FLOAT32	Напряжение 1U1, В					
LD0/Aux1_MMXN2/Vol/mag/f	FLOAT32	Напряжение 1U2, В					
LD0/Aux1_MMXN3/Vol/mag/f	FLOAT32	Напряжение 1U3, В					
LD0/Aux1_MMXN4/Vol/mag/f	FLOAT32	Напряжение 1U4, В					
LD0/Aux2_MMXN1/Vol/mag/f	FLOAT32	Напряжение 2U1, В					
LD0/Aux2_MMXN2/Vol/mag/f	FLOAT32	Напряжение 2U2, В					
LD0/Aux2_MMXN3/Vol/mag/f	FLOAT32	Напряжение 2U3, В					
LD0/Aux2_MMXN4/Vol/mag/f	FLOAT32	Напряжение 2U4, В					
LD0/Seq_MSQI1/SeqV/c1/cVal/ang/f	FLOAT32	Угол напряжения U1_1, градус					
LD0/Seq_MSQI1/SeqV/c1/cVal/mag/f	FLOAT32	Напряжение U1_1, В					
LD0/Seq_MSQI1/SeqV/c2/cVal/ang/f	FLOAT32	Угол напряжения U2_1, градус					
LD0/Seq_MSQI1/SeqV/c2/cVal/mag/f	FLOAT32	Напряжение U2_1, В					
LD0/Seq_MSQI1/SeqV/c3/cVal/ang/f	FLOAT32	Угол напряжения 3U0_1, градус					
LD0/Seq_MSQI1/SeqV/c3/cVal/mag/f	FLOAT32	Напряжение 3U0_1, В					
LD0/Seq_MSQI2/SeqV/c1/cVal/ang/f	FLOAT32	Угол напряжения U1_2, градус					
LD0/Seq_MSQI2/SeqV/c1/cVal/mag/f	FLOAT32	Напряжение U1_2, В					
LD0/Seq_MSQI2/SeqV/c2/cVal/ang/f	FLOAT32	Угол напряжения U2_2, градус					
LD0/Seq_MSQI2/SeqV/c2/cVal/mag/f	FLOAT32	Напряжение U2_2, В					
LD0/Seq_MSQI2/SeqV/c3/cVal/ang/f	FLOAT32	Угол напряжения 3U0_2, градус					
LD0/Seq_MSQI2/SeqV/c3/cVal/mag/f	FLOAT32	Напряжение 3U0_2, В					