

ОПОВЕЩАТЕЛЬ СВЕТОВОЙ ПОЖАРНЫЙ ВЗРЫВОЗАЩИЩЕННЫЙ

ОРБИТА МК-С

Руководство по эксплуатации. Паспорт. Настоящий паспорт совмещен с руководством по эксплуатации и предназначен для изучения устройства и правильной эксплуатации Оповещателя пожарного взрывозащищённого модели ОРБИТА МК С (далее по тексту - Оповещатель).

К монтажу, технической эксплуатации и техническому обслуживанию Оповещателя может быть допущен аттестованный персонал специализированных организаций, имеющих соответствующие лицензии, ознакомленный с настоящим паспортом и прошедший инструктаж по ТБ.

1 НАЗНАЧЕНИЕ И УСЛОВИЯ ЭКСПЛУАТАЦИИ

Оповещатели соответствуют требованиям ГОСТ Р 53325-2012, ГОСТ Р МЭК 60079-0-2011, ГОСТ ІЕС 60079-1-2011, ГОСТ 14254-96, НПБ-77-98, ТУ 4371-001-81888935-2010 и предназначен для обеспечения возможности подачи световых тревожных сигналов в системах пожарной сигнализации и пожаротушения при совместной работе с приёмно-контрольными устройствами.

Вид и уровень взрывозащиты Оповещателя — 1Ex d IIB T6 Gb по ГОСТ Р МЭК 60079-0-2011. Оповещатели могут быть применены в взрывоопасных зонах и помещениях 1 и 2 классов по ГОСТ IEC 60079-10-1-2011 и ГОСТ IEC 60079-14-2011 и во взрывоопасных зонах и помещениях всех классов в соответствии с «Правилами устройства электроустановок» (ПУЭ) гл. 7.3 и другими нормативно-техническими документами, регламентирующими применение электрооборудования во взрывоопасных зонах.

Степень защиты Оповещателя от воды и пыли по ГОСТ 14254-96 ІР67.

Оповещатель может эксплуатироваться в климатической зоне УХЛ1 по ГОСТ 15150-69 в атмосфере типа II по ГОСТ 15150-69 в диапазоне температур от минус 60 до 70°С. По устойчивости к воздействию атмосферного давления Оповещатель соответствует группе исполнения Р1 по ГОСТ 12997-84.

Материал корпуса Оповещателя – алюминиевый сплав, либо коррозионная сталь 12X18H10T.

По устойчивости к воздействию синусоидальных вибраций высокой частоты Оповещатель относятся к группе исполнения N2 по ГОСТ 12997-84.

По способу защиты человека от поражения электрическим током по ГОСТ Р 51350-90 Оповещатель соответствуют III классу.

По электромагнитной совместимости Оповещатель соответствует требованиям ГОСТ Р 50009-2000 и НПБ 57-97 для второй степени жёсткости.

Конструктивное исполнение Оповещателя обеспечивает их пожарную безопасность по ГОСТ 12.1.004-91 и НПБ 77-98.

Оповещатель в нерабочем состоянии (хранение, транспортирование и при перерывах в работе) соответствует ГОСТ 12997-84 и условиям хранения и транспортирования 4 по ГОСТ 15150-69.

Оповещатель поставляется с кабельными вводами различных исполнений:

- для открытой прокладки присоединяемого кабеля (индекс в обозначении К);
- для прокладки присоединяемого кабеля в трубе (T1/2, T3/4);
- для присоединения бронированного кабеля (Б);
- для присоединения кабеля в металлорукаве (КМ15, КМ20).

В комплект каждого кабельного ввода входят стальная заглушка и резиновые уплотнения для кабеля диаметром 8–10мм и 10-12мм.

При записи Оповещателя в технической документации и при заказе необходимо указать: Пример записи обозначения при заказе:

$\frac{\text{ОРБИТА МК C}}{1} - \text{A-} \frac{\text{T-3/4}}{3} - \frac{\text{ТУ 4371-001-81888935-2010}}{4}$

- 1- тип прибора;
- 2- материал корпуса:
 - А- алюминиевый сплав;
 - Н коррозионная сталь 12Х18Н10Т
- 3- тип штуцера:
 - **Т-3/4** для прокладки кабеля в трубе с присоединительной резьбой G 3\4-B, диаметр наружной изоляции кабеля 8 12 мм;
 - **Т-1/2** для прокладки кабеля в трубе с присоединительной резьбой G1/2-B, диаметр наружной изоляции кабеля 8 10 мм;
 - К под кабель для открытой прокладки с диаметром наружной изоляции 8 12 мм;
 - Б для бронированного кабеля с проходным диаметром 8 12 мм;
 - КМ15 для кабеля в металлорукаве 15мм;
 - КМ20 для кабеля в металлорукаве 20мм.
- 4- Технические условия

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

- 2.1 Схема подключения к приёмно-контрольному устройству двухпроводная, либо трехпроводная с проводом заземления.
 - 2.2 Режим работы подача светового сигнала при включении напряжения питания;
 - 2.3 Режимы светового оповещения непрерывный; прерывистый
 - 2.4 Напряжение питания Оповещателя, постоянный ток =12-30В,
 - 2.5 Максимальная потребляемый ток, А, не более 0,1
 - 2.6 Максимальный диаметр проводов,
 - подключаемых к клеммам Оповещателя, мм, 2,5
 - 2.7 Масса Оповещателя, кг, не более 2,0
 - 2.8 Частота световых вспышек, Гц 0,5-1

3 ТРЕБОВАНИЯ НАДЕЖНОСТИ

3.1 Срок службы Оповещателя (до списания), лет 10

4 КОМПЛЕКТНОСТЬ

- 4.1 Оповещатель 1шт.
- 4.2 Паспорт, совмещенный с руководством по эксплуатации 1шт.
- 4.3. Кольцо уплотнительное для кабеля 8 10мм 2шт.
- 4.4. Кольцо уплотнительное для кабеля 10 12мм 2шт.

5 КОНСТРУКЦИЯ ОПОВЕЩАТЕЛЯ И ОПИСАНИЕ РАБОТЫ

5.1 Конструкция

Оповещатель представляет собой алюминиевую, либо из коррозионно-стойкой стали 12X18H10T взрывонепроницаемую оболочку, соответствующую требованиям ГОСТ Р МЭК 60079-0-2011 и ГОСТ IEC 60079-1-2011, состоящую из корпуса 1 и крышки 2 (рис.А1, рис.А2, Приложение A).

Внутри взрывонепроницаемой оболочки размещена печатная плата 9 с электронной схемой управления, переключателем режима оповещения, излучающими светодиодами и клеммами WAGO для внешних подключений. Плата установлена на дне корпуса и закреплена с помощью четырех винтов.

Верхняя (открытая) часть корпуса закрыта крышкой. К крышке изнутри установлено защитное стекло 4 (светопропускающий элемент). Крышка навинчивается на корпус за счет собственной резьбы. Между корпусом и крышкой имеется уплотнительная прокладка 3. После установки крышки защитное стекло надежно зафиксировано между корпусом и крышкой.

Герметизированный взрывонепроницаемый кабельный ввод 6 (рис.А1 — рис.А3, приложение А) позволяет ввести кабель с наружным диаметром 8...12 мм (для бронированных кабелей указанные диаметры относятся к их диаметру по поясной изоляции). В оповещателе имеется два кабельных ввода, что позволяет подключить его последовательно в шлейф пожарной сигнализации.

Самоотвинчивание крышки предотвращается применением проволочной скрутки (поз.12, рис.A1, приложение A). Самоотвинчивание штуцеров кабельных вводов предотвращается применением контргаек.

Прочность электрического контакта проводов кабелей с платой обеспечивается применением клемм WAGO модели 236. Заземляющие зажимы предохранены от ослабления применением контргаек и пружинных шайб.

Оповещатель имеет наружный и внутренний зажимы заземления. Внутренний зажим заземления размещён внутри оболочки на стойке, его знак заземления размещён на печатной плате.

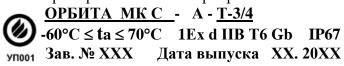
Оповещатель крепится на стене двумя болтами. Пространственное положение Оповещателя при эксплуатации – любое.

Температура нагрева наружных частей Оповещателя от собственных энергоисточников при любой аварии не превышает 85°C.

5.2 Описание работы

На клеммы "+" и "-" подаётся напряжение питания светового оповещения (рис.А4, приложение A). В электрической схеме Оповещателя установлен диод для защиты схемы от неправильной подачи напряжения питания.

При включении напряжения питания Оповещатель подаёт световой сигнал. Микропереключатель «LIGHT» позволяет выбрать режим работы светового оповещения: прерывистое (OFF) или непрерывное (ON) свечение.


6 МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- 6.1 На корпусе Оповещателя должна быть нанесена маркировка:
- тип Оповещатель ОРБИТА МК С;
- температура окружающего воздуха (-60°C \leq ta \leq +70 °C);

- маркировка взрывозащиты 1Ex d IIB T6 Gb;
- степень защиты от проникновения пыли и влаги ІР67;
- заводской номер;
- год выпуска.

Маркировка может быть выполнена в одну или несколько строк. Последовательность расположения составных частей маркировки по строкам и в пределах одной строки определяется изготовителем.

Пример выполнения маркировки:

- 6.3 Маркировка транспортной тары, в которую упаковываются Оповещатель, выполнена в соответствии с требованиями ГОСТ 14192-96 и имеет манипуляционные знаки "Осторожно, хрупкое" и "Боится сырости", "Верх".
 - 6.4 После установки на объекте Оповещатель пломбируют.

7 УПАКОВКА

- 7.1 Каждый Оповещатель завернут в один-два слоя упаковочной бумаги или полиэтиленовой плёнки.
- 7.2 Оповещатель, упакованный по п.7.1 настоящего паспорта, размещается в транспортной таре по ГОСТ 2991-85 и ГОСТ 5959-80.
- 7.3 Количество Оповещателей, упакованных в одну единицу транспортной тары (один ящик), определяется заказом, но не более 2 шт. По согласованию с заказчиком допускается упаковка иного количества Оповещателей.
- 7.4 Сопроводительная документация обернута водонепроницаемой бумагой ГОСТ 8828-89 (или помещена в полиэтиленовую пленку ГОСТ 10354-82 и заварена) и размещена под крышкой транспортной тары. В случае упаковки отгрузочной партии, состоящей из нескольких единиц транспортной тары, пакет с сопроводительной документацией размещён в транспортной таре под номером один.
- 7.5 Оповещатель в транспортной таре выдерживает воздействие температуры в диапазоне от минус 50 до плюс 50° С и относительной влажности $(95\pm3)\%$ при температуре 35° С.

8 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

8.1 Эксплуатационные ограничения

- 8.1.1 Оповещатели могут быть применены во взрывоопасных зонах 1 и 2 классов по ГОСТ IEC 60079-10-1-2011 и ГОСТ IEC 60079-14-2011.
- 8.1.2 Подключаемые к Оповещателю электрические кабели должны быть проложены в трубах или другим способом защищены от растягивающих и скручивающих нагрузок.

8.2 Подготовка изделия к использованию.

- 8.2.1 Перед монтажом необходимо расконсервировать и осмотреть Оповещатель, при этом следует обратить внимание на:
 - маркировку взрывозащиты и предупредительную надпись на крышке;
 - отсутствие повреждений оболочки (на корпусе, крышке и на стекле);
 - наличие всех крепежных элементов (болтов, гаек, шайб и т.д.);
 - наличие средств уплотнения кабельных вводов и крышки;

- наличие заземляющих устройств;
- наличие контргаек и пружинных шайб.

ВНИМАНИЕ!

МЕХАНИЧЕСКИЕ ПОВРЕЖДЕНИЯ ВЗРЫВОЗАЩИТНЫХ ПОВЕРХНОСТЕЙ НЕ ДОПУСКАЮТСЯ

- 8.2.2 При монтаже Оповещателя необходимо руководствоваться:
- ГОСТ IEC 60079-10-1-2011 Взрывоопасные среды. Часть 10-1. Классификация зон. Взрывоопасные газовые среды;
- ГОСТ IEC 60079-14-2011— Взрывоопасные среды. Часть 14. Проектирование, выбор и монтаж электроустановок;
 - «Правилами устройства электроустановок» (ПУЭ);
- «Правилами эксплуатации электроустановок потребителей» (ПЭЭП), в том числе главой 3.4 «Электроустановки во взрывоопасных зонах»;
- «Правилами техники безопасности при эксплуатации электроустановок потребителей» (ПТБ);
- РД 78.145-93 Пособие к руководящему документу. Системы и комплексы охранной, пожарной и охранно-пожарной сигнализации. Правила производства и приёмки работ. М., ВНИИПО МВД РОССИИ, М.,1993г.;
 - настоящим руководством по эксплуатации;
 - инструкциями на объекты, в составе которых применены Табло.
- 8.2.3 Подготовить на стене помещения отверстия под крепёж Оповещателя, рисунок разметки стены показан в приложении А. Рекомендуемая высота установки Табло не менее 2,3 метра над уровне пола.
- 8.2.4 Монтаж Оповещателя осуществить кабелем цилиндрической формы в резиновой (или пластмассовой) изоляции с резиновой (или пластмассовой) оболочкой с заполнением между жилами, подводимым в трубе, либо бронированным кабелем.

ВНИМАНИЕ!

ПРИМЕНЕНИЕ КАБЕЛЯ С ПОЛИЭТИЛЕНОВОЙ ИЗОЛЯЦИЕЙ ИЛИ В ПОЛИЭТИЛЕНОВОЙ ОБОЛОЧКЕ НЕ ДОПУСКАЕТСЯ.

Диаметр кабеля должен соответствовать диаметру уплотнительного кольца для него из комплекта поставки. Для кабеля диаметром от 8 до 10мм должно применяться кольцо с внутренним диаметром 9.5 ± 0.5 мм; для кабеля от 10 по 12мм должно применяться кольцо с внутренним диаметром 11.5 ± 0.5 мм.

Установку кабеля в кабельном вводе производить в соответствии с чертежами приведенными в приложении А. Для бронированного кабеля броню необходимо разделать и равномерно распределить между конусом поз.4 и втулкой поз.5 (приложение А, рис.А3в). Металлорукав должен быть полностью навинчен на штуцер поз.6 (приложение А, рис.А3г).

Момент затяжки гайки кабельного ввода (20±3)Нм. Кабель не должен проворачиваться и смещаться в кабельном вводе.

8.2.5 Схема подключения — двухпроводная, либо трехпроводная с проводом заземления. Схемы внешних подключений приведены в приложении А. При трехпроводной схеме подключения используется внутренний зажим заземления. Провода кабеля необходимо разделать на длину 5...7 мм, диаметр каждого провода не должен превышать 2,5 мм. Разделанные провода подключить к соответствующим клеммам WAGO отжав контакты с помощью специального инструмента или отвёртки.

8.2.6 Оповещатель должен быть заземлен с помощью внутреннего или внешнего зажима заземления. При подключении заземления следует руководствоваться требованиями ПУЭ. При транзите кабеля через Оповещатель второй провод заземления на внутреннем зажиме отделить от первого дополнительной гайкой с шайбами.

Электрическое сопротивление заземляющего устройства (зажимов заземления) Оповещателя не должно превышать 4 Ом.

- 8.2.7 Перед монтажом все взрывозащитные поверхности и зажимы заземления покрыть противокоррозионной смазкой, например, ЦИАТИМ-201 ГОСТ 6267-74. Снятую при монтаже крышку со стеклом установить на их штатное место. При этом следует обратить внимание на правильность её установки и на наличие всех крепежных и фиксирующих элементов. Крышку плотно затянуть по резьбе и зафиксировать проволочной скруткой.
- 8.2.8 Проверку работоспособности Оповещателя произвести путём подачи на него напряжения питания от штатного приёмно-контрольного устройства.
- 8.2.9 Выбор режима работы светового оповещения выполнить с помощью микропереключателя «LIGHT» (Приложение A, рис. A5).
- 8.2.10 Ввод Оповещателя в эксплуатацию после монтажа, выполнение мероприятий по технике безопасности произвести в полном соответствии с нормативной документацией, указанной в п.8.2.2 настоящего паспорта.

8.3 Использование Оповещателя.

- 8.3.1 Эксплуатация Оповещателя должно осуществляться в соответствии с:
- ГОСТ IEC 60079-10-1-2011 Взрывоопасные среды. Часть 10-1. Классификация зон. Взрывоопасные газовые среды;
- ГОСТ IEC 60079-14-2011— Взрывоопасные среды. Часть 14. Проектирование, выбор и монтаж электроустановок;
- «Правилами эксплуатации электроустановок потребителей» (ПЭЭП), в том числе главой 3.4 «Электроустановки во взрывоопасных зонах»;
- «Правилами техники безопасности при эксплуатации электроустановок потребителей» (ПТБ);

настоящим руководством по эксплуатации;

инструкциями на объекты, в составе которых применен Оповещатель.

9 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ

9.1 ВНИМАНИЕ!

ПРИ ЭКСПЛУАТАЦИИ ОПОВЕЩАТЕЛЬ ПРОТИРАТЬ ТОЛЬКО ВЛАЖНОЙ ТКАНЬЮ!

- 9.2 При эксплуатации Оповещатель необходимо проводить его проверку и техническое обслуживание в соответствии с требованиями ГОСТ IEC 60079-17-2011.
- 9.3 Периодические осмотры Оповещателя должны проводиться в сроки, которые устанавливаются технологическим регламентом в зависимости от производственных условий, но не реже одного раза в месяц.

При осмотре Оповещателя следует обратить внимание на:

- целостность оболочки (отсутствие на ней вмятин, трещин и других повреждений);

- наличие маркировки взрывозащиты и предупредительной надписи (окраска маркировки взрывозащиты и предупредительной надписи должна быть контрастной фону Оповещателя и сохраняться в течение всего срока службы);
- наличие крепежных деталей, контргаек и пружинных шайб (крепежные винты должны быть равномерно затянуты);
- состояние заземляющих устройств (зажимы заземления должны быть затянуты, электрическое сопротивление заземляющего устройства не должно превышать 4 Ом);
- надежность уплотнения вводных кабелей (проверку производят на отключенном от сети Оповещателе, при проверке кабель не должен выдергиваться или проворачиваться в узле уплотнения кабельного ввода);
- качество взрывозащитных поверхностей деталей оболочки Оповещателя, подвергаемых разборке (наличие противокоррозионной смазки на взрывозащитных поверхностях; механические повреждения и коррозия взрывозащитных поверхностей не допускаются).

ВНИМАНИЕ!

ЭКСПЛУАТАЦИЯ ОПОВЕЩАТЕЛЯ С ПОВРЕЖДЁННЫМИ ДЕТАЛЯМИ, ОБЕСПЕЧИВАЮЩИМИ ВЗРЫВОЗАЩИТУ, НЕ ДОПУСКАЕТСЯ.

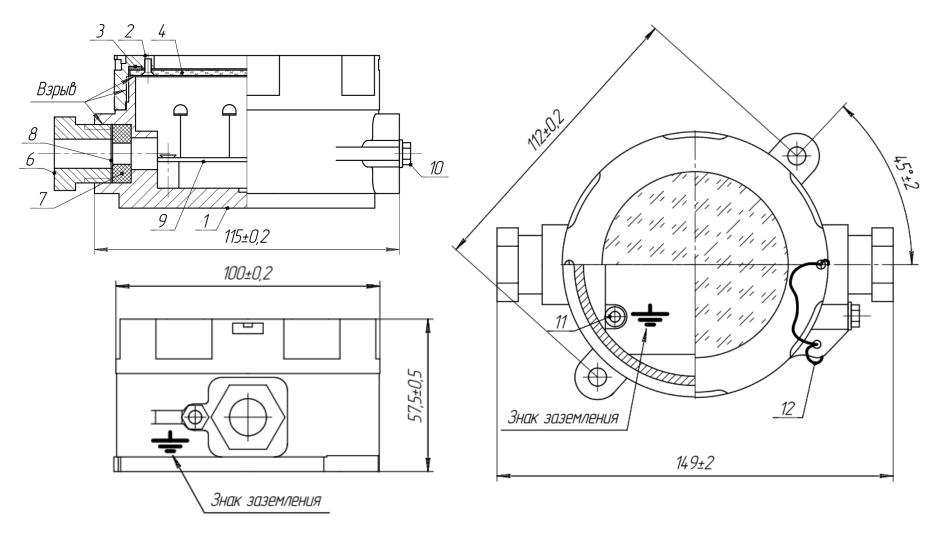
- 9.4 Через каждые 6 месяцев эксплуатации и после каждого аварийного срабатывания Оповещатель проверяется на работоспособность по методике пункта 8.2.9 настоящего паспорта.
- 9.5 Ремонт Табло должен производиться только на предприятии-изготовителе. По окончании ремонта должны быть проверены все параметры взрывозащиты в соответствии с требованиями, указанными на рисунках в приложении А. Отступления не допускаются.
- 9.6 Оповещатель подлежит техническому освидетельствованию в составе объекта (комплекса) в котором он применён.

10 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

- 10.1 Хранение и транспортирование Оповещателя в упаковке предприятия-изготовителя может осуществляться в условиях хранения и транспортирования 4 по ГОСТ 15150-69. Тип атмосферы II по ГОСТ 15150-69.
 - 10.2 Предельный срок хранения в указанных условиях без переконсервации 1 год.
- 10.3 Оповещатель в упаковке предприятия-изготовителя допускается транспортировать любым видом транспорта. Во время погрузочно-разгрузочных работ и при транспортировании ящики с Оповещателями не должны подвергаться резким механическим ударам и воздействию атмосферных осадков. Способ укладки ящиков на транспортное средство должен исключать их перемещение при транспортировании.

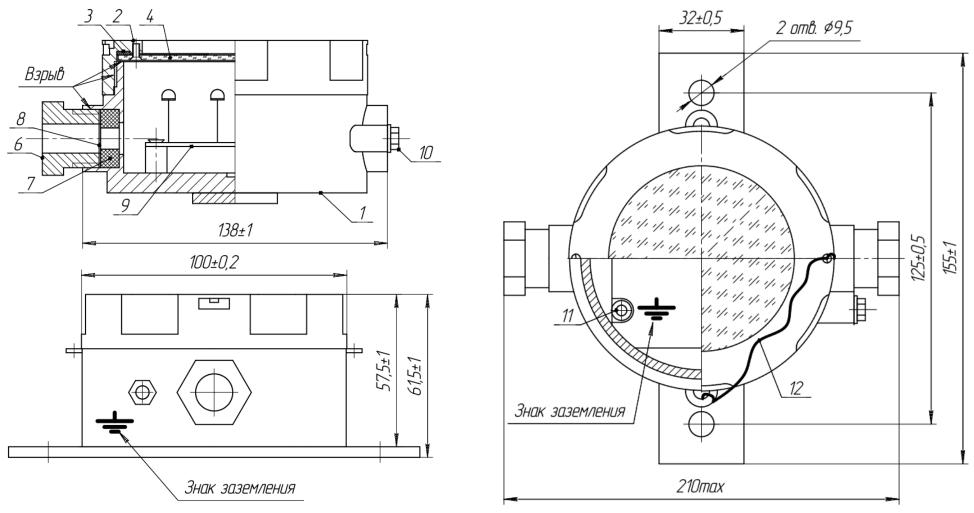
11 СВИДЕТЕЛЬСТВО О ПРИЕМКЕ

/
/


Адрес предприятия-изготовителя:

445009. Самарская обл. г.Тольятти, Новозаводская 2, строение 309.

ООО «Компания СМД»


Тел. (8482) 949-112 Факс (8482) 616-940 e-mail: <u>smd@inbox.ru</u>

http://www.smd-tlt.ru/

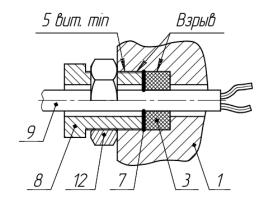
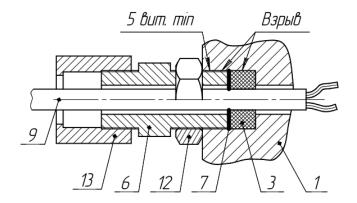
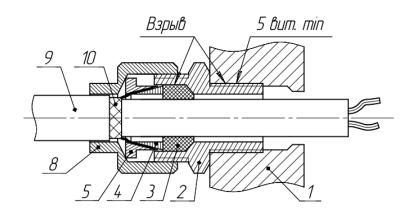
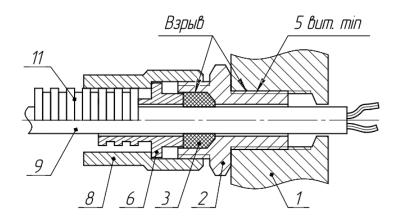

1 корпус; 2 крышка; 3 герметизирующая прокладка; 4 светопропускающий элемент; 6 кабельный ввод; 7 уплотнительное кольцо; 8 шайба; 9 плата со светодиодами; 10,11 заземление; 12 проволочная скрутка.

Рис.А1 Конструкция оповещателя светового Орбита МК С А (корпус из алюминиевого сплава).

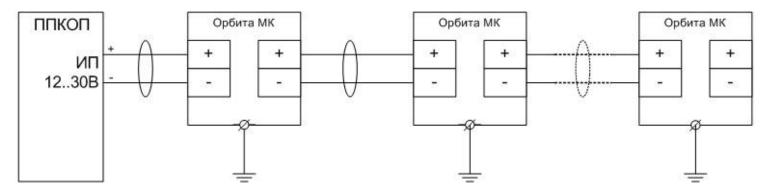


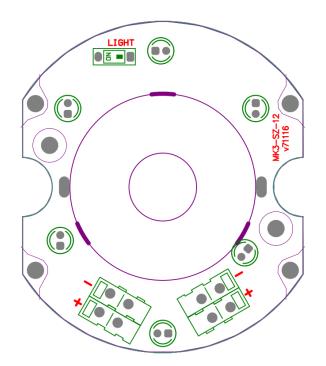
Основание; 2 крышка; 3 герметизирующая прокладка; 4 светопропускающий элемент; 6 кабельный ввод; 7 уплотнительное кольцо для кабеля; 8 шайба; 9 плата со светоизлучающими диодами; 10 болт заземления; 11 внутреннее заземление; 12 проволочная скрутка.


Рис.А2 Конструкция оповещателя светового Орбита МК С Н (корпус из коррозионно-стойкой стали).


а) Открытая прокладка кабеля

б) Прокладка кабеля в трубе


в) Ввод бронированного кабеля


г) Ввод кабеля в металлорукаве

1 Оболочка; 2 корпус ввода; 3 уплотнитель; 4 конус; 5 нажимная втулка; 6 штуцер; 7 шайба; 8 гайка; 9 кабель; 10 броня; 11 металлорукав; 12 контргайка; 13 трубная муфта.

Рис.АЗ Варианты кабельных вводов

ППКОП – прибор приемно-контрольный охранно-пожарный. Напряжение питания 12..30В; соблюдать полярность, клеммы маркированы «+» и «-». Максимальный ток, проходящий по плате между зажимами питания, не должен превышать 3А.

Рис.А4 Схема подключения

Положение переключателей режима работы. Таблица А1.

Переключатель	"ON"	"OFF"
"LIGHT"	Постоянное	Прерывистое
световое оповещение		Прерывиетое

Рис. А5 Переключатели режима работы